skip to main content


This content will become publicly available on August 2, 2024

Title: Ce 4 B 2 C 2 F 0.14 H 2.26 : Cerium Borocarbides with Fluoride and Hydride Interstitials Grown from Ce/Cu Flux
Award ID(s):
2126077
NSF-PAR ID:
10470460
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
Crystal Growth & Design
Volume:
23
Issue:
8
ISSN:
1528-7483
Page Range / eLocation ID:
5919 to 5924
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper addresses the use of Ce 0.8 Gd 0.2 O 2−δ (GDC) infiltration into the Ni–(Y 2 O 3 ) 0.08 (ZrO 2 ) 0.92 (YSZ) fuel electrode of solid oxide cells (SOCs) for improving their electrochemical performance in fuel cell and electrolysis operation. Although doped ceria infiltration into Ni–YSZ has recently been shown to improve the electrode performance and stability, the mechanisms defining how GDC impacts electrochemical characteristics are not fully delineated. Furthermore, the electrochemical characteristics have not yet been determined over the full range of conditions normally encountered in fuel cell and electrolysis operation. Here we present a study of both symmetric and full cells aimed at understanding the electrochemical mechanisms of GDC-modified Ni–YSZ over a wide range of fuel compositions and temperatures. Single-step GDC infiltration at an appropriate loading substantially reduced the polarization resistance of Ni–YSZ electrodes in electrolyte-supported cells, as measured using electrochemical impedance spectroscopy (EIS) at various temperatures (600–800 °C) in a range of H 2 O–H 2 mixtures (3–90 vol% H 2 O). Fuel-electrode-supported cells had significant concentration polarization due to the thick Ni–YSZ supports. A distribution of relaxation times approach is used to develop a physically-based electrochemical model; the results show that GDC reduces the reaction resistance associated with three-phase boundaries, but also appears to improve oxygen transport in the electrode. Increasing the H 2 O fraction in the H 2 –H 2 O fuel mixture reduced both the three-phase boundary resistance and the gas diffusion resistance for Ni–YSZ; with GDC infiltration, the electrode resistance showed less variation with fuel composition. GDC infiltration improved the performance of fuel-electrode-supported full cells, which yielded a maximum power density of 2.28 W cm −2 in fuel cell mode and an electrolysis current density at 1.3 V of 2.22 A cm −2 , both at 800 °C. 
    more » « less
  2. null (Ed.)
  3. Abstract

    Designing highly active and robust catalysts for the oxygen evolution reaction is key to improving the overall efficiency of the water splitting reaction. It has been previously demonstrated that evaporation induced self‐assembly (EISA) can be used to synthesize highly porous and high surface area cerate‐based fluorite nanocatalysts, and that substitution of Ce with 50% rare earth (RE) cations significantly improves electrocatalyst activity. Herein, the defect structure of the best performing nanocatalyst in the series are further explored, Nd2Ce2O7, with a combination of neutron diffraction and neutron pair distribution function analysis. It is found that Nd3 +cation substitution for Ce in the CeO2fluorite lattice introduces higher levels of oxygen Frenkel defects and induces a partially reduced RE1.5Ce1.5O5 +xphase with oxygen vacancy ordering. Significantly, it is demonstrated that the concentration of oxygen Frenkel defects and improved electrocatalytic activity can be further enhanced by increasing the compositional complexity (number of RE cations involved) in the substitution. The resulting novel compositionally‐complex fluorite– (La0.2Pr0.2Nd0.2Tb0.2Dy0.2)2Ce2O7is shown to display a low OER overpotential of 210 mV at a current density of 10 mAcm−2in 1M KOH, and excellent cycling stability. It is suggested that increasing the compositional complexity of fluorite nanocatalysts expands the ability to tailor catalyst design.

     
    more » « less