skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deterministic Budget-Feasible Clock Auctions
We revisit the well-studied problem of budget-feasible procurement, where a buyer with a strict budget constraint seeks to acquire services from a group of strategic providers (the sellers). During the last decade, several strategyproof budget-feasible procurement auctions have been proposed, aiming to maximize the value of the buyer, while eliciting each seller’s true cost for providing their service. These solutions predominantly take the form of randomized sealed-bid auctions: they ask the sellers to report their private costs and then use randomization to determine which subset of services will be procured and how much each of the chosen providers will be paid, ensuring that the total payment does not exceed the buyer’s budget. Our main result in this paper is a novel method for designing budget-feasible auctions, leading to solutions that outperform the previously proposed auctions in multiple ways. First, our solutions take the form of descending clock auctions, and thus satisfy a list of very appealing properties, such as obvious strategyproofness, group strategyproofness, transparency, and unconditional winner privacy; this makes these auctions much more likely to be used in practice. Second, in contrast to previous results that heavily depend on randomization, our auctions are deterministic. As a result, we provide an affirmative answer to one of the main open questions in this literature, asking whether a deterministic strategyproof auction can achieve a constant approximation when the buyer’s valuation function is submodular over the set of services. In addition to this, we also provide the first deterministic budget-feasible auction that matches the approximation bound of the best-known randomized auction for the class of subadditive valuations. Finally, using our method, we improve the best-known approximation factor for monotone submodular valuations, which has been the focus of most of the prior work  more » « less
Award ID(s):
2008280 1755955
PAR ID:
10470465
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
33rd ACM-SIAM Symposium on Discrete Algorithms (SODA22)
Date Published:
ISBN:
9781611977073
Page Range / eLocation ID:
2940-2963
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent decades, the design of budget feasible mechanisms for a wide range of procurement auction settings has received significant attention in the Artificial Intelligence (AI) community. These procurement auction settings have practical applications in various domains such as federated learning, crowdsensing, edge computing, and resource allocation. In a basic procurement auction setting of these domains, a buyer with a limited budget is tasked with procuring items (\eg, goods or services) from strategic sellers, who have private information on the true costs of their items and incentives to misrepresent their items' true costs. The primary goal of budget feasible mechanisms is to elicit the true costs from sellers and determine items to procure from sellers to maximize the buyer valuation function for the items and ensure that the total payment to the sellers is no more than the budget. In this survey, we provide a comprehensive overview of key procurement auction settings and results of budget feasible mechanisms. We provide several promising future research directions. 
    more » « less
  2. We investigate the problem of designing randomized obviously strategyproof (OSP) mechanisms in several canonical auction settings. Obvious strategyproofness, introduced by Li [American Economic Review 2017], strengthens the well-known concept of dominant-strategy incentive compatibility (DSIC). Loosely speaking, it ensures that even agents who struggle with contingent reasoning can identify that their dominant strategy is optimal.Thus, one would hope to design OSP mechanisms with good approximation guarantees. Unfortunately, Ron [SODA 2024] has showed that deterministic OSP mechanisms fail to achieve an approximation better than the minimum of the number of items and the number of bidders, even for the simple settings of additive and unit-demand bidders. We circumvent these impossibilitiesby showing that randomized mechanisms that are obviously strategy-proof in the universal sense obtain a constant factor approximation for these classes. We show that this phenomenon occurs also for the setting of a multi-unit auction with single-minded bidders. Thus, our results provide a more positive outlook on the design of OSP mechanisms and exhibit a stark separation between the power of randomized and deterministic OSP mechanisms.To complement the picture, we provide lower bounds on the performance of randomized OSP mechanisms in each setting. This further demonstrates that OSP mechanisms are significantly weaker than dominant-strategy mechanisms: it is well known that the deterministic VCG mechanism outputs an optimal allocation in dominant-strategies, whereas we show that even randomized OSP mechanisms cannot obtain more than 87.5% of the optimal welfare. 
    more » « less
  3. We design and analyze deterministic and randomized clock auctions for single-parameter domains with downward-closed feasibility constraints, aiming to maximize the social welfare. Clock auctions have been shown to satisfy a list of compelling incentive properties making them a very practical solution for real-world applications, partly because they require very little reasoning from the participating bidders. However, the first results regarding the worst-case performance of deterministic clock auctions from a welfare maximization perspective indicated that they face obstacles even for a seemingly very simple family of instances, leading to a logarithmic inapproximability result; this inapproximability result is information-theoretic and holds even if the auction has unbounded computational power. In this paper we propose a deterministic clock auction that achieves a logarithmic approximation for any downward-closed set system, using black box access to a solver for the underlying optimization problem. This proves that our clock auction is optimal and that the aforementioned family of instances exactly captures the information limitations of deterministic clock auctions. We then move beyond deterministic auctions and design randomized clock auctions that achieve improved approximation guarantees for a generalization of this family of instances, suggesting that the earlier indications regarding the performance of clock auctions may have been overly pessimistic. 
    more » « less
  4. We study combinatorial auctions with interdependent valuations, where each agent i has a private signal sithat captures her private information and the valuation function of every agent depends on the entire signal profile, [Formula: see text]. The literature in economics shows that the interdependent model gives rise to strong impossibility results and identifies assumptions under which optimal solutions can be attained. The computer science literature provides approximation results for simple single-parameter settings (mostly single-item auctions or matroid feasibility constraints). Both bodies of literature focus largely on valuations satisfying a technical condition termed single crossing (or variants thereof). We consider the class of submodular over signals (SOS) valuations (without imposing any single crossing-type assumption) and provide the first welfare approximation guarantees for multidimensional combinatorial auctions achieved by universally ex post incentive-compatible, individually rational mechanisms. Our main results are (i) four approximation for any single-parameter downward-closed setting with single-dimensional signals and SOS valuations; (ii) four approximation for any combinatorial auction with multidimensional signals and separable-SOS valuations; and (iii) (k + 3) and (2 log(k) + 4) approximation for any combinatorial auction with single-dimensional signals, with k-sized signal space, for SOS and strong-SOS valuations, respectively. All of our results extend to a parameterized version of SOS, d-approximate SOS, while losing a factor that depends on d. Funding: A. Eden was partially supported by NSF Award IIS-2007887, the European Research Council (ERC) under the European Union's Seventh Framework Programme [FP7/2007-2013]/ERC Grant Agreement 337122, by the Israel Science Foundation [Grant 317/17], and by an Amazon research award. M. Feldman received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program [Grant Agreement 866132], by the Israel Science Foundation [Grant 317/17], by an Amazon research award, and by the NSF-BSF [Grant 2020788]. The work of K. Goldner was supported partially by NSF awards DMS-1903037 and CNS-2228610 and a Shibulal Family Career Development Professorship. A. R. Karlin was supported by the NSF-CCF [Grant 1813135]. 
    more » « less
  5. Deligkas, Argyrios; Filos-Ratsikas, Aris (Ed.)
    We study a dynamic model of procurement auctions in which the agents (sellers) will abandon the auction if their utility does not satisfy their private target, in any given round. We call this “abandonment” and analyze its consequences on the overall cost to the mechanism designer (buyer), as it reduces competition in future rounds of the auction and drives up the price. We show that in order to maintain competition and minimize the overall cost, the mechanism designer has to adopt an inefficient (per-round) allocation, namely to assign the demand to multiple agents in a single round. We focus on threshold mechanisms as a simple way to achieve ex-post incentive compatibility, akin to reserves in revenue-maximizing forward auctions. We then consider the optimization problem of finding the optimal thresholds. We show that even though our objective function does not have the optimal substructure property in general, if the underlying distributions satisfy some regularity properties, the global optimal solution lies within a region where the optimal thresholds are monotone and can be calculated with a greedy approach, or even more simply in a parallel fashion. 
    more » « less