Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We design and analyze deterministic and randomized clock auctions for single-parameter domains with downward-closed feasibility constraints, aiming to maximize the social welfare. Clock auctions have been shown to satisfy a list of compelling incentive properties making them a very practical solution for real-world applications, partly because they require very little reasoning from the participating bidders. However, the first results regarding the worst-case performance of deterministic clock auctions from a welfare maximization perspective indicated that they face obstacles even for a seemingly very simple family of instances, leading to a logarithmic inapproximability result; this inapproximability result is information-theoretic and holds even if the auction has unbounded computational power. In this paper we propose a deterministic clock auction that achieves a logarithmic approximation for any downward-closed set system, using black box access to a solver for the underlying optimization problem. This proves that our clock auction is optimal and that the aforementioned family of instances exactly captures the information limitations of deterministic clock auctions. We then move beyond deterministic auctions and design randomized clock auctions that achieve improved approximation guarantees for a generalization of this family of instances, suggesting that the earlier indications regarding the performance of clock auctions may have been overly pessimistic.more » « less
-
We revisit the well-studied problem of budget-feasible procurement, where a buyer with a strict budget constraint seeks to acquire services from a group of strategic providers (the sellers). During the last decade, several strategyproof budget-feasible procurement auctions have been proposed, aiming to maximize the value of the buyer, while eliciting each seller’s true cost for providing their service. These solutions predominantly take the form of randomized sealed-bid auctions: they ask the sellers to report their private costs and then use randomization to determine which subset of services will be procured and how much each of the chosen providers will be paid, ensuring that the total payment does not exceed the buyer’s budget. Our main result in this paper is a novel method for designing budget-feasible auctions, leading to solutions that outperform the previously proposed auctions in multiple ways. First, our solutions take the form of descending clock auctions, and thus satisfy a list of very appealing properties, such as obvious strategyproofness, group strategyproofness, transparency, and unconditional winner privacy; this makes these auctions much more likely to be used in practice. Second, in contrast to previous results that heavily depend on randomization, our auctions are deterministic. As a result, we provide an affirmative answer to one of the main open questions in this literature, asking whether a deterministic strategyproof auction can achieve a constant approximation when the buyer’s valuation function is submodular over the set of services. In addition to this, we also provide the first deterministic budget-feasible auction that matches the approximation bound of the best-known randomized auction for the class of subadditive valuations. Finally, using our method, we improve the best-known approximation factor for monotone submodular valuations, which has been the focus of most of the prior workmore » « less
-
A cache memory unit needs to be shared among n strategic agents. Each agent has different preferences over the files to be brought into memory. The goal is to design a mechanism that elicits these preferences in a truthful manner and outputs a fair and efficient memory allocation. A trivially truthful and fair solution would isolate each agent to a 1/n fraction of the memory. However, this could be very inefficient if the agents have similar preferences and, thus, there is room for cooperation. On the other hand, if the agents are not isolated, unless the mechanism is carefully designed, they have incentives to misreport their preferences and free ride on the files that others bring into memory. In this paper we explore the power and limitations of truthful mechanisms in this setting.We demonstrate that mechanisms blocking agents from accessing parts of the memory can achieve improved efficiency guarantees, despite the inherent inefficiencies of blocking.more » « less