Campus shutdowns during the SARS-CoV2 pandemic posed unique challenges to faculty and students engaged in laboratory courses. Formerly hands-on experiments had to be quickly pivoted to emergency remote learning. While some resources existed prior to this period, many currently available online modules and/or simulations focus on a single technique. The Biochemistry Authentic Scientific Inquiry Lab (BASIL) curriculum has, for several years, provided a robust, linked, holistic inquiry experience that allows students to make connections between multiple techniques, both computational in nature as well as wet-lab based. As a Course-based Undergraduate Research Experience (CURE), this flexible, module-based curriculum allows students to generate original hypotheses based on analysis of proteins of unknown function. We have taught this curriculum as the upper-level laboratory course on our campuses and were obliged to transition to remote instruction at various points in the course sequence. We report on the experiences of faculty and students over the transition period in this course. Additionally, we report as a case study results of one of our campus’ ongoing discipline-based education research (DBER) on the BASIL curriculum prior to and during remote delivery. 
                        more » 
                        « less   
                    
                            
                            An Online CURE Taught at a Community College During the Pandemic Shows Mixed Results for Development of Research Self-Efficacy and In-class Relationships
                        
                    
    
            Abstract The Bee the CURE is a novel course-based undergraduate research experience (CURE) that engages introductory biology students in DNA barcoding (DNA extraction, amplification, and bioinformatics) in partnership with the Tucson Bee Collaborative and the University of Arizona. The first iteration of this CURE taught at Pima Community College (PCC) occurred during the Fall 2020 semester in which the course was taught online and students focused on bioinformatics. Due to the online format, students were unable to participate directly in the wet-lab components (extraction and amplification) of the course. These were approximated with videos of the instructor performing the tasks. A qualitative case study of this semester built from student interviews found that students were able to form positive relationships with instructors and peer mentors but that the online format of the class posed some challenges to relationship formation. Students reported developing self-efficacy in bioinformatics skills while online lab participation disrupted student’s gaining “hands-on experiences” and seldom led to development of science self-efficacy in wet lab skills. Our findings from a study of a synchronous online CURE allowed us to characterize a context in which online learning posed a challenge and perhaps even a threat to research self-efficacy, especially regarding skill development and self-efficacy in “hands-on” areas, such as wet-bench research skills. Yet optimistically, our study highlights the potential of online community college learning environments to provide mastery experiences in online science contexts (e.g., bioinformatics) and opportunities for relationship building. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1928400
- PAR ID:
- 10470556
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Journal of Science Education and Technology
- Volume:
- 33
- Issue:
- 1
- ISSN:
- 1059-0145
- Format(s):
- Medium: X Size: p. 118-130
- Size(s):
- p. 118-130
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            The COVID-19 outbreak has had a significant impact on higher education worldwide. In-person courses had to be quickly transited to online, including lab courses embedded with Course-based Undergraduate Research Experiences (CUREs). In response to this challenge, we successfully converted a fully in-person biochemistry lab that integrated with a 6-week modular CURE (mCURE) into a hybrid CURE (hCURE) in Fall 2020, with support from the Malate dehydrogenase CUREs Community. The hCURE was structured to have in-person labs and online activities arranged on an alternating weekly basis, so that only half of the regular class size of students attended the hands-on labs at any given time to maintain proper social distancing. To evaluate the efficacy of the hCURE, student science self-efficacy and conceptual understanding of protein structure–function relationships were measured using pre-course and post-course surveys and tests, respectively. Our data showed a significant increase in student science self-efficacy and conceptual knowledge test scores. Furthermore, we compared the pre-lab quiz scores that assessed various biochemical concepts and skills across three different semesters, Fall 2019 with a fully in-person mCURE before the pandemic, Fall 2020 with the hCURE implemented during the pandemic, and Fall 2021 when the lab returned to the fully in-person mCURE following the pandemic. A significant decline in quiz scores from Fall 2019 to Fall 2020, and an even further decline from Fall 2019 to Fall 2021 were observed, suggesting that apart from the impact of course modality, the pandemic may have exerted a lasting adverse effect on student learning.more » « less
- 
            null (Ed.)In response to the outbreak of COVID-19 the national landscape of higher education changed quickly and dramatically to move “online” in the Spring semester of 2020. While distressing to both faculty and students, it presents a unique opportunity to explore how students responded to this unexpected and challenging learning situation. In four undergraduate STEM courses that incorporated course-based undergraduate research experiences (CUREs)—which are often focused on discovery learning and laboratory research—we had an existing study in progress to track students' interest development at five time points over the Spring 2020 semester. Via this ongoing study we were able to investigate how students stay engaged in their college science courses when facing unexpected challenges and obstacles to their learning. Longitudinal survey data from 41 students in these CURE courses demonstrated that students' situational interest dropped significantly when their CURE courses unexpectedly shifted from hands-on, discovery-based, and laboratory-based instruction to online instruction. Although we observed a dramatic decline in student interest in general after the CURE courses moved fully online, the decline rates varied across students. Students who were able to make meaningful connections between the learning activities and their personal or career goals were more likely to maintain a higher level of interest in the course. Implications for practice are discussed.more » « less
- 
            Boone, E.; Thuecks, S. (Ed.)Recent calls for increased inclusion in & access to authentic course-based research have been building on the momentum of support for Course-Based Undergraduate Research Experiences (CUREs). However, these courses can be very challenging to implement at scale or with low resources. To equitably provide these critical science process skills to the largest possible cohort of students, we have developed a new student research project within our first-year biology lab. Our student team research project is integrated throughout the semester, building authentic science process skills from start to finish. Students start from a research idea, develop a multi-site experimental design, do hands-on data collection at home, analyze quantitative data, and present their findings in a conference-style format. We have also embedded structured time for building collaborative skills. This novel change to our lab curriculum runs online, hybrid or face-to-face; it has no lab budget costs; and it has been well-received in multiple offerings of our course of ~200-600 students. It also has allowed us to improve our assessments: we evaluate writing (graphical abstracts) and/or oral presentation skills. Further, our lab exam can now be more cognitively challenging because our new curriculum better prepares students to analyze, evaluate, and synthesize. This article demonstrates that we can reduce barriers to doing authentic research, at scale in introductory courses; and we include here all materials needed to adapt this project to your own context.more » « less
- 
            Active learning strategies aim to increase student critical thinking and engagement. In this article I describe my biochemistry classroom switch from lecture-only to half lecture and half in-class activities, inspired by Process Oriented Guided Inquiry Learning (POGIL). Students in a first semester biochemistry course maintained the same ACS exam scores at the end of the course, continued to rate the course and its instruction highly, and class attendance significantly increased after the change in pedagogy. This format was also implemented in a second semester biochemistry course during a course redesign. The flexibility of in-class activities allowed an iterative addition of a bioinformatics themed course-based undergraduate research experience (CURE). The Biochemistry II students report learning practical skills that are likely to benefit them in the future.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
