Course-Based Undergraduate Research Experiences (CUREs) have been shown to provide students with
a variety of learning benefits including better conceptual understanding, improved critical thinking and data
literacy skills, and increased interest in pursuing scientific careers. Additionally, CUREs provide students
with opportunities to participate in authentic research experiences that have a broader impact outside of the
classroom. Despite the numerous benefits, the field of astronomy has lagged behind disciplines like biology
and chemistry when it comes to including CUREs in the curriculum. Not limited to astronomy, however, is
the lack of research opportunities and courses offered to students enrolled in undergraduate degree
programs online. In the Fall of 2020, Arizona State University (ASU) introduced the nation’s first online
bachelor’s degree program in astronomy and planetary sciences (APS). To make research accessible to a
more diverse population of learners, it is imperative that students in this program have access to the same
opportunities to participate in authentic research as those in the parallel in-person program. In this work, we
describe the development, implementation, and assessment of a fully online CURE for astronomy majors as
part of the APS program. We conducted a mixed methods analysis consisting of a Likert style survey
administered pre- and postcourse as well as student interviews at the conclusion of the semester. Survey
results from the course’s first two offerings (N ¼ 24) indicated that students’ research self-efficacy and
science identity both improved. An exoplanet-specific multiple-choice assessment (N ¼ 26) showed
statistically significant improvements in conceptual understanding postcourse. Additionally, student
interview (N ¼ 11) responses relayed that students felt a stronger sense of belonging to both ASU
and the larger astronomy community after participation in the course. The results from this study are
encouraging and suggest that student participation in this online CURE led to similar improvements across
a variety of outcomes previously identified in studies of in-person CUREs spanning multiple disciplines.
more »
« less
Impact of transition to a hybrid model of biochemistry course-based undergraduate research experience during the COVID-19 pandemic on student science self-efficacy and conceptual knowledge
The COVID-19 outbreak has had a significant impact on higher education worldwide. In-person courses had to be quickly transited to online, including lab courses embedded with Course-based Undergraduate Research Experiences (CUREs). In response to this challenge, we successfully converted a fully in-person biochemistry lab that integrated with a 6-week modular CURE (mCURE) into a hybrid CURE (hCURE) in Fall 2020, with support from the Malate dehydrogenase CUREs Community. The hCURE was structured to have in-person labs and online activities arranged on an alternating weekly basis, so that only half of the regular class size of students attended the hands-on labs at any given time to maintain proper social distancing. To evaluate the efficacy of the hCURE, student science self-efficacy and conceptual understanding of protein structure–function relationships were measured using pre-course and post-course surveys and tests, respectively. Our data showed a significant increase in student science self-efficacy and conceptual knowledge test scores. Furthermore, we compared the pre-lab quiz scores that assessed various biochemical concepts and skills across three different semesters, Fall 2019 with a fully in-person mCURE before the pandemic, Fall 2020 with the hCURE implemented during the pandemic, and Fall 2021 when the lab returned to the fully in-person mCURE following the pandemic. A significant decline in quiz scores from Fall 2019 to Fall 2020, and an even further decline from Fall 2019 to Fall 2021 were observed, suggesting that apart from the impact of course modality, the pandemic may have exerted a lasting adverse effect on student learning.
more »
« less
- Award ID(s):
- 1846908
- PAR ID:
- 10519109
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Discover Education
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2731-5525
- Page Range / eLocation ID:
- 43
- Subject(s) / Keyword(s):
- CURE COVID
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Marshall, Pamela Ann (Ed.)ABSTRACT The initial phase of the COVID-19 pandemic changed the nature of course delivery from largely in-person to exclusively remote, thus disrupting the well-established pedagogy of the Genomics Education Partnership (GEP; https://www.thegep.org ). However, our web-based research adapted well to the remote learning environment. As usual, students who engaged in the GEP’s Course-based Undergraduate Research Experience (CURE) received digital projects based on genetic information within assembled Drosophila genomes. Adaptations for remote implementation included moving new member faculty training and peer Teaching Assistant office hours from in-person to online. Surprisingly, our faculty membership significantly increased and, hence, the number of supported students. Furthermore, despite the mostly virtual instruction of the 2020–2021 academic year, there was no significant decline in student learning nor attitudes. Based on successfully expanding the GEP CURE within a virtual learning environment, we provide four strategic lessons we infer toward democratizing science education. First, it appears that increasing access to scientific research and professional development opportunities by supporting virtual, cost-free attendance at national conferences attracts more faculty members to educational initiatives. Second, we observed that transitioning new member training to an online platform removed geographical barriers, reducing time and travel demands, and increased access for diverse faculty to join. Third, developing a Virtual Teaching Assistant program increased the availability of peer support, thereby improving the opportunities for student success. Finally, increasing access to web-based technology is critical for providing equitable opportunities for marginalized students to fully participate in research courses. Online CUREs have great potential for democratizing science education.more » « less
-
ABSTRACT As a validated assessment, the Microbiology for Health Sciences Concept Inventory (MHSCI) is a valuable tool to evaluate student progress in health sciences microbiology courses. In this brief analysis, we survey MHSCI faculty users and report student MHSCI scores to determine the impact on student learning gains of the COVID-19 pandemic and subsequent quarantine in spring 2020. Although a majority of students reported moving to a fully online lecture and lab microbiology course in the spring 2020 semester, there was no statistically significant impact on student outcomes reported by the MHSCI, and by some measures, student learning gains increased in the semester students moved to online learning. Further research is necessary to determine the continuing impact of online lecture/lab courses on student outcomes on the MHSCI. Our analysis of data from spring 2020 shows that the MHSCI is still a statistically reliable measure of student misconceptions and overall difficulty scores for each item on the MHSCI was unchanged due to the pandemic.more » « less
-
Triggered situational interest in introductory courses can encourage student engagement, motivation, and value for the geosciences. In-person labs have traditionally played a unique role in triggering situational interest compared to lectures, but the COVID transition online disrupted these dynamics. We examine students’ self-reported situational interest from 6,463 responses to weekly surveys in online introductory geoscience lab courses at five U.S. institutions during fall 2020 and spring 2021. Approximately half of students reported that labs were equally (49.4%) or more interesting (4.3%) online, compared to a hypothetical in-person option. Analysis showed a statistically-significant interaction between student situational interest and the combined effect of 1) the course the students were enrolled in and 2) the topic of the lab session (F (20, 6395) = 4.038, p < 0.001). However, topic and course together explain only about 4% of the variance in the dataset, indicating that other factors have a large role in triggering interest. Students who indicated that labs were less interesting online (46.3%) most often cited not being able to physically interact with instructional materials (56.3%) and difficulty interacting with peers (30.6%). When asked what revisions would increase their situational interest, additional hands-on interaction (22.8%) and increased relevance to their life or future career (20.2%) were the answer choices students selected most frequently. These findings identify modifications and enhancements grounded in students’ self-reported interest that can inform the design of online introductory geology labs.more » « less
-
Course-based Undergraduate Research Experiences (CUREs) are an increasingly utilized model for exposing students to research. The lack of robust assessments is a major hurdle to wider adoption of CUREs. The Coronavirus Infectious Disease 2019 (COVID-19) pandemic necessitated a drastic shift of in-person courses to the online format. Using the Participant Perception Indicator (PPI) survey, we measured students’ self-reported changes in learning from such a biochemistry course at a large university in south Florida based on the Biochemistry Authentic Scientific Inquiry Lab (BASIL) model. By doing this, we were able to better understand the student-benefits of CUREs and how these benefits are affected by changes in learning modalities between two relevant semesters, i.e., winter and summer of 2020. Anticipated learning outcomes (ALOs) help partially fill the gap left by the loss of physical interaction in experimental procedures. Our analysis indicated that students learned more through bioinformatic experiments compared to their wet-lab counterparts. Using pre- and post- surveys, students reported that their experience and confidence gains lagged behind their knowledge gain of technique-based skills. Students are not as confident in their understanding of techniques when unable to perform those in the physical laboratory. Thus, despite extensive pursuit of the purpose and protocols of the experiments and techniques, neither their experience nor their confidence was on par with their knowledge. This study is one of the first examples demonstrating a quantitative student-learning assessment of a CURE in the science, technology, engineering, and mathematics (STEM) disciplines. The novel assessment strategies targeted to identify gaps in learning mastery could facilitate the adoption of CUREs, fostering opportunities for all undergraduate students to vital laboratory research experiences in STEM.more » « less