skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: $L^2(I;H^1(\Omega)^d)$ and $L^2(I;L^2(\Omega)^d)$ best approximation type error estimates for Galerkin solutions of transient Stokes problems
In this paper we establish best approximation type estimates for the fully discrete Galerkin solutions of transient Stokes problem in $$L^2(I;L^2(\Omega)^d)$$ and $$L^2(I;H^1(\Omega)^d)$$ norms. These estimates fill the gap in the error analysis of the transient Stokes problems and have a number of applications. The analysis naturally extends to inhomogeneous parabolic problems. The best type $$L^2(I;H^1(\Omega))$$ error estimate are new even for scalar parabolic problems.  more » « less
Award ID(s):
1913133
PAR ID:
10470601
Author(s) / Creator(s):
;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Calcolo
ISSN:
xxxxxxxxxxx
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this article, we obtain an optimal best-approximation-type result for fully discrete approximations of the transient Stokes problem. For the time discretization, we use the discontinuous Galerkin method and for the spatial discretization we use standard finite elements for the Stokes problem satisfying the discrete inf-sup condition. The analysis uses the technique of discrete maximal parabolic regularity. The results require only natural assumptions on the data and do not assume any additional smoothness of the solutions. 
    more » « less
  2. A s a c om pl e men t t o da ta d edupli cat ion , de lta c om p ress i on fu r- t he r r edu c es t h e dat a vo l u m e by c o m pr e ssi n g n o n - dup li c a t e d ata chunk s r e l a t iv e to t h e i r s i m il a r chunk s (bas e chunk s). H ow ever, ex is t i n g p o s t - d e dup li c a t i o n d e l t a c o m pr e ssi o n a p- p ro a ches fo r bac kup s t or ag e e i t h e r su ffe r f ro m t h e l ow s i m - il a r i t y b e twee n m any de te c ted c hun ks o r m i ss so me po t e n - t i a l s i m il a r c hunks , o r su ffer f r om l ow (ba ckup and r es t ore ) th r oug hpu t du e t o extr a I/ Os f or r e a d i n g b a se c hun ks o r a dd a dd i t i on a l s e r v i c e - d i s r up t ive op e r a t i on s to b a ck up s ys t em s. I n t h i s pa p e r, w e pr opo se L oop D e l t a t o a dd ress the above - m e n t i on e d prob l e m s by an e nha nced em b e ddi n g d e l t a c o m p - r e ss i on sc heme i n d e dup li c a t i on i n a non - i n t ru s ive way. T h e e nha nce d d elt a c o mpr ess ion s che m e co m b in e s f our key t e c h - ni qu e s : (1) du a l - l o c a li t y - b a s e d s i m il a r i t y t r a c k i n g to d e t ect po t e n t i a l si m il a r chun k s b y e x p l o i t i n g both l o g i c a l and ph y - s i c a l l o c a li t y, ( 2 ) l o c a li t y - a wa r e pr e f e t c h i n g to pr efe tc h ba se c hun ks to a vo i d ex t ra I/ Os fo r r e a d i n g ba s e chun ks on t h e w r i t e p at h , (3) c a che -aware fil t e r to avo i d ext r a I/Os f or b a se c hunk s on t he read p at h, a nd (4) i nver sed de l ta co mpressi on t o perf orm de lt a co mpress i o n fo r d at a chunk s t hat a re o th e r wi se f o r b i dd e n to s er ve as ba se c hunk s by r ew r i t i n g t e c hn i qu e s d e s i g n e d t o i m p r ove r es t o re pe rf o rma nc e. E x p e r i m e n t a l re su lts indi ca te t hat L oop D e l t a i ncr ea se s t he c o m pr e ss i o n r a t i o by 1 .2410 .97 t i m e s on t op of d e dup li c a - t i on , wi t hou t no t a b l y a ffe c t i n g th e ba ck up th rou ghpu t, a nd i t i m p r ove s t he res to re p er fo r m an ce b y 1.23.57 t i m e 
    more » « less
  3. In one dimension, a circuit network equivalence has been established for omega materials. However, 2-D circuit-based or transmission-line metamaterials have previously been restricted to magnetic and electric responses. This paper proposes 2-D circuit-based omega materials using asymmetric circuits. A general formulation is provided in terms of ABCD-parameters and an example is shown using Pi-networks. These metamaterials could enable the design of compact beamformers, power dividers, and other microwave devices. 
    more » « less
  4. We prove local Lipschitz regularity for weak solutions to a class of degenerate parabolic PDEs modeled on the parabolic p-Laplacian $$\(\partial_t u= \sum_{i=1}^{2n} X_i (|\nabla_0 u|^{p-2} X_i u),\$$ in a cylinder $$\(\Omega\times\mathbb{R}^+\)$$, where $$ \(\Omega\)$$ is domain in the Heisenberg group $$\(\mathbb{H}^n\)$$, and $$\(2\le p \le 4\)$$. The result continues to hold in the more general setting of contact subRiemannian manifolds. 
    more » « less
  5. We develop discrete $$W^2_p$$-norm error estimates for the Oliker--Prussner method applied to the Monge--Ampère equation. This is obtained by extending discrete Alexandroff estimates and showing that the contact set of a nodal function contains information on its second-order difference. In addition, we show that the size of the complement of the contact set is controlled by the consistency of the method. Combining both observations, we show that the error estimate $$\| u - u_h \|_{W^2_{f,p}} (\mathcal{N}^I_h)$$ converges in order $$O(h^{1/p})$$ if $p > d$ and converges in order $$O(h^{1/d} \ln (\frac 1 h)^{1/d})$$ if $$p \leq d$$, where $$\|\cdot\|_{W^2_{f,p}(\mathcal{N}^I_h)}$$ is a weighted $$W^2_p$$-type norm, and the constant $C>0$ depends on $$\|{u}\|_{C^{3,1}(\bar\Omega)}$$, the dimension $$d$$, and the constant $$p$$. Numerical examples are given in two space dimensions and confirm that the estimate is sharp in several cases. 
    more » « less