A Boolean {\em $$k$$-monotone} function defined over a finite poset domain $${\cal D}$$ alternates between the values $$0$$ and $$1$$ at most $$k$$ times on any ascending chain in $${\cal D}$$. Therefore, $$k$$-monotone functions are natural generalizations of the classical {\em monotone} functions, which are the {\em $$1$$-monotone} functions. Motivated by the recent interest in $$k$$-monotone functions in the context of circuit complexity and learning theory, and by the central role that monotonicity testing plays in the context of property testing, we initiate a systematic study of $$k$$-monotone functions, in the property testing model. In this model, the goal is to distinguish functions that are $$k$$-monotone (or are close to being $$k$$-monotone) from functions that are far from being $$k$$-monotone. Our results include the following: \begin{enumerate} \item We demonstrate a separation between testing $$k$$-monotonicity and testing monotonicity, on the hypercube domain $$\{0,1\}^d$$, for $$k\geq 3$$; \item We demonstrate a separation between testing and learning on $$\{0,1\}^d$$, for $$k=\omega(\log d)$$: testing $$k$$-monotonicity can be performed with $$2^{O(\sqrt d \cdot \log d\cdot \log{1/\eps})}$$ queries, while learning $$k$$-monotone functions requires $$2^{\Omega(k\cdot \sqrt d\cdot{1/\eps})}$$ queries (Blais et al. (RANDOM 2015)). \item We present a tolerant test for functions $$f\colon[n]^d\to \{0,1\}$$ with complexity independent of $$n$$, which makes progress on a problem left open by Berman et al. (STOC 2014). \end{enumerate} Our techniques exploit the testing-by-learning paradigm, use novel applications of Fourier analysis on the grid $$[n]^d$, and draw connections to distribution testing techniques.
more »
« less
A Circuit-based Approach to the Synthesis of 2-D Omega Materials
In one dimension, a circuit network equivalence has been established for omega materials. However, 2-D circuit-based or transmission-line metamaterials have previously been restricted to magnetic and electric responses. This paper proposes 2-D circuit-based omega materials using asymmetric circuits. A general formulation is provided in terms of ABCD-parameters and an example is shown using Pi-networks. These metamaterials could enable the design of compact beamformers, power dividers, and other microwave devices.
more »
« less
- Award ID(s):
- 1807940
- PAR ID:
- 10186672
- Date Published:
- Journal Name:
- 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting
- Page Range / eLocation ID:
- 1201 to 1202
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the problem of private vector mean estimation in the shuffle model of privacy where n users each have a unit vector v^{(i)} in R^d. We propose a new multi-message protocol that achieves the optimal error using O~(min(n*epsilon^2, d)) messages per user. Moreover, we show that any (unbiased) protocol that achieves optimal error requires each user to send Omega(min(n*epsilon^2,d)/log(n)) messages, demonstrating the optimality of our message complexity up to logarithmic factors. Additionally, we study the single-message setting and design a protocol that achieves mean squared error O(dn^{d/(d+2)} * epsilon^{-4/(d+2)}). Moreover, we show that any single-message protocol must incur mean squared error Omega(dn^{d/(d+2)}), showing that our protocol is optimal in the standard setting where epsilon = Theta(1). Finally, we study robustness to malicious users and show that malicious users can incur large additive error with a single shuffler.more » « less
-
We prove two new results about the inability of low-degree polynomials to uniformly approximate constant-depth circuits, even to slightly-better-than-trivial error. First, we prove a tight Omega~(n^{1/2}) lower bound on the threshold degree of the SURJECTIVITY function on n variables. This matches the best known threshold degree bound for any AC^0 function, previously exhibited by a much more complicated circuit of larger depth (Sherstov, FOCS 2015). Our result also extends to a 2^{Omega~(n^{1/2})} lower bound on the sign-rank of an AC^0 function, improving on the previous best bound of 2^{Omega(n^{2/5})} (Bun and Thaler, ICALP 2016). Second, for any delta>0, we exhibit a function f : {-1,1}^n -> {-1,1} that is computed by a circuit of depth O(1/delta) and is hard to approximate by polynomials in the following sense: f cannot be uniformly approximated to error epsilon=1-2^{-Omega(n^{1-delta})}, even by polynomials of degree n^{1-delta}. Our recent prior work (Bun and Thaler, FOCS 2017) proved a similar lower bound, but which held only for error epsilon=1/3. Our result implies 2^{Omega(n^{1-delta})} lower bounds on the complexity of AC^0 under a variety of basic measures such as discrepancy, margin complexity, and threshold weight. This nearly matches the trivial upper bound of 2^{O(n)} that holds for every function. The previous best lower bound on AC^0 for these measures was 2^{Omega(n^{1/2})} (Sherstov, FOCS 2015). Additional applications in learning theory, communication complexity, and cryptography are described.more » « less
-
In this paper we establish best approximation type estimates for the fully discrete Galerkin solutions of transient Stokes problem in $$L^2(I;L^2(\Omega)^d)$$ and $$L^2(I;H^1(\Omega)^d)$$ norms. These estimates fill the gap in the error analysis of the transient Stokes problems and have a number of applications. The analysis naturally extends to inhomogeneous parabolic problems. The best type $$L^2(I;H^1(\Omega))$$ error estimate are new even for scalar parabolic problems.more » « less
-
An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications.more » « less
An official website of the United States government

