Abstract: In this article, we present an educational intervention that embeds ethics education within research laboratories. This structure is designed to assist students in addressing ethical challenges in a more informed way, and to improve the overall ethical culture of research environments. The project seeks (a) to identify factors that students and researchers consider relevant to ethical conduct in science, technology, engineering, and math (STEM) and (b) to promote the cultivation of an ethical culture in experimental laboratories by integrating research stakeholders in a bottom-up approach to developing context-specific, ethics-based guidelines. An important assumption behind this approach is that direct involvement in the process of developing laboratory specific ethical guidelines will positively influence researchers’ understanding of ethical research and practice issues, their handling of these issues, and the promotion of an ethical culture in the respective laboratory. The active involvement may increase the sense of ownership and integration of further discussion on these important topics. Based on the project experiences, the project team seeks to develop a module involving the bottom-up building of codes-of-ethics-based guidelines that can be used by a broad range of institutions and that will be distributed widely.
more »
« less
Environmental risk of nontuberculous mycobacterial infection: Strategies for advancing methodology
The National Institute of Allergy and Infectious Diseases organized a symposium in June 2022, to facilitate discussion of the environmental risks for nontuberculous mycobacteria exposure and disease. The expert researchers presented recent studies and identified numerous research gaps. This report summarizes the discussion and identifies six major areas of future research related to culture-based and culture independent laboratory methods, alternate culture media and culturing conditions, frameworks for standardized laboratory methods, improved environmental sampling strategies, validation of exposure measures, and availability of high-quality spatiotemporal data.
more »
« less
- Award ID(s):
- 1915277
- PAR ID:
- 10470640
- Publisher / Repository:
- Tuberculosis
- Date Published:
- Journal Name:
- Tuberculosis
- Volume:
- 139
- Issue:
- C
- ISSN:
- 1472-9792
- Page Range / eLocation ID:
- 102305
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Microplastics (MPs; 1 µm to 5 mm) are a persistent and pervasive environmental pollutant of emergent and increasing concern. Human exposure to MPs through food, water, and air has been documented and thus motivates the need for a better understanding of the biological implications of MP exposure. These impacts are dependent on the properties of MPs, including size, morphology, and chemistry, as well as the dose and route of exposure. This overview offers a perspective on the current methods used to assess the bioactivity of MPs. First, we discuss methods associated with MP bioactivity research with an emphasis on the variety of assays, exposure conditions, and reference MP particles that have been used. Next, we review the challenges presented by common instrumentation and laboratory materials, the lack of standardized reference materials, and the limited understanding of MP dosimetry. Finally, we propose solutions that can help increase the applicability and impact of future studies while reducing redundancy in the field. The excellent protocols published in this issue are intended to contribute toward standardizing the field so that the MP knowledge base grows from a reliable foundation. © 2024 Wiley Periodicals LLC.more » « less
-
Abstract Water connects the environment, culture, and biology, yet only recently has it emerged as a major focus for research in human biology. To facilitate such research, we describe methods to measure biological, environmental, and perceptual indicators of human water needs. This toolkit provides an overview of methods for assessing different dimensions of human water need, both well‐established and newly‐developed. These include: (a) markers of hydration (eg, urine specific gravity, doubly labeled water) important for measuring the impacts of water need on human biological functioning; (b) methods for measuring water quality (eg, digital colorimeter, membrane filtration) essential for understanding the health risks associated with exposure to microbiological, organic, metal, inorganic nonmental, and other contaminants; and (c) assessments of household water insecurity status that track aspects of unmet water needs (eg, inadequate water service, unaffordability, and experiences of water insecurity) that are directly relevant to human health and biology. Together, these methods can advance new research about the role of water in human biology and health, including the ways that insufficient, unsafe, or insecure water produces negative biological and health outcomes.more » « less
-
Stanley Lo, University of (Ed.)There is a growing need for the development and communication of cell culture-based laboratory activities specifically designed for undergraduate students. This multi-week laboratory activity allows students to take part in the planning, experimentation, data analysis, and communication of the results of their cell culture-based research project. The laboratory activity specifically uses fatty acid induction of lipid droplets in cancer HeLa cells followed by a novel live-cell staining protocol developed specifically to allow undergraduate students the opportunity to complete a cell culture-based fluorescence microscopy project. This laboratory activity incorporates multiple levels of assessment and allows students to explore the responses of HeLa cancer cells to their environment.more » « less
-
Abstract Untreated sewage discharges leading to environmental contamination are increasingly common in communities across the globe. The cause of these discharges ranges from sewer lines in disrepair, blockages, and in the era of more extreme wet weather events, the infiltration of stormwater into the system during heavy downpours. Regardless of the driver of these events, the aftermath results in raw sewage spilling into local waterways, city streets, and commercial and residential structures. Historical research in public health has thoroughly documented the connection between exposure to untreated sewage and waterborne disease. Recent research has detected antibiotic-resistant bacteria at wastewater treatment facilities at a time when deaths by antibiotic-resistant infections are on the rise. However, no research has explored the exposure pathways of antibiotic-resistant bacteria during sanitary sewer overflows and household-level sewage backups. In this commentary, we aim to introduce this new frontier of environmental health risks and disasters. To do this, we describe the history of modern sanitation and sewer infrastructure with a particular focus on wastewater infrastructure in the U.S. We also explore emerging risks and current methods for identifying antibiotic-resistant bacteria in the environment. We end with future directions for interdisciplinary scholarship at the nexus of urban planning, engineering, and public health by introducing the Water Emergency Team (WET) Project. WET is a community-based multi-method effort to identify environmental risks in the aftermath of household backups through (1) residential surveys, (2) indoor visual inspections, (3) environmental sampling, and (4) laboratory processing and reporting. Our hope is that by introducing this comprehensive approach to environmental risks analysis, other scholars will join us in this effort and ultimately towards addressing this grand challenge of our time.more » « less
An official website of the United States government

