In this work, we demonstrate an adjustable microfluidic tactile sensor for measurement of post-exercise response of local arterial parameters. The sensor entailed a polydimethylsiloxane (PDMS) microstructure embedded with a 5×1 resistive transducer array. The pulse signal in an artery deflected the microstructure and registered as a resistance change by the transducer aligned at the artery. PDMS layers of different thicknesses were added to adjust the microstructure thickness for achieving good sensor-artery conformity at the radial artery (RA) and the carotid artery (CA). Pulse signals of nine (n=9) young healthy male subjects were measured at-rest and at different times post-exercise, and a medical instrument was used to simultaneously measure their blood pressure and heart rate. Vibration-model-based analysis was conducted on a measured pulse signal to estimate local arterial parameters: elasticity, viscosity, and radius. The arterial elasticity and viscosity increased, and the arterial radius decreased at the two arteries 1min post-exercise, relative to at-rest. The changes in pulse pressure (PP) and mean blood pressure (MAP) between at-rest and 1min post-exercise were not correlated with that of heart rate and arterial parameters. After the large 1min post-exercise response, the arterial parameters and PP all went back to their at-rest values over time post-exercise.Clinical Relevance— The study results show the potential application of an affordable, user-friendly device for a more comprehensive arterial health assessment.
more »
« less
A Low-power wearable acoustic device for accurate invasive arterial pressure monitoring
Abstract BackgroundMillions of catheters for invasive arterial pressure monitoring are placed annually in intensive care units, emergency rooms, and operating rooms to guide medical treatment decision-making. Accurate assessment of arterial blood pressure requires an IV pole-attached pressure transducer placed at the same height as a reference point on the patient’s body, typically, the heart. Every time a patient moves, or the bed is adjusted, a nurse or physician must adjust the height of the pressure transducer. There are no alarms to indicate a discrepancy between the patient and transducer height, leading to inaccurate blood pressure measurements. MethodsWe present a low-power wireless wearable tracking device that uses inaudible acoustic signals emitted from a speaker array to automatically compute height changes and correct the mean arterial blood pressure. Performance of this device was tested in 26 patients with arterial lines in place. ResultsOur system calculates the mean arterial pressure with a bias of 0.19, inter-class correlation coefficients of 0.959 and a median difference of 1.6 mmHg when compared to clinical invasive arterial measurements. ConclusionsGiven the increased workload demands on nurses and physicians, our proof-of concept technology may improve accuracy of pressure measurements and reduce the task burden for medical staff by automating a task that previously required manual manipulation and close patient surveillance.
more »
« less
- Award ID(s):
- 1914873
- PAR ID:
- 10470694
- Publisher / Repository:
- Communications Medicine
- Date Published:
- Journal Name:
- Communications Medicine
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2730-664X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
OBJECTIVES/GOALS: For patients suffering from respiratory failure there are limited options to support gas exchange aside from mechanical ventilation. Our goal is to design, investigate, and refine a novel device for extrapulmonary gas exchange via peritoneal perfusion with perfluorocarbons (PFC) in an animal model. METHODS/STUDY POPULATION: Hypoxic respiratory failure will be modeled using 50 kg swine mechanically ventilated with subatmospheric (10-12%) oxygen. Through a midline laparotomy, two cannulas, one for inflow and one for outflow, will be placed into the peritoneal space. After abdominal closure, the cannulas will be connected to a device capable of draining, oxygenating, regulating temperature, filtering, and pumping perfluorodecalin at a rate of 3-4 liters per minute. During induced hypoxia, the physiologic response to PFC circulation through the peritoneal space will be monitored with invasive (e.g. arterial and venous blood gases) and non-invasive measurements (e.g. pulse oximetry). RESULTS/ANTICIPATED RESULTS: We anticipate that the initiation of oxygenated perfluorocarbons perfusion through the peritoneal space during induced hypoxia will create an increase in hemoglobin oxygen saturation and partial pressure of oxygen in arterial blood. As we expect gas exchange to be occurring in the microvascular beds of the peritoneal membrane, we expect to observe an increase in the venous blood oxygen content sampled from the inferior vena cava. Using other invasive hemodynamic measures (e.g. cardiac output) and blood samples taken from multiple venous sites, a quantifiable rate of oxygen delivery will be calculable. DISCUSSION/SIGNIFICANCE: Peritoneal perfluorocarbon perfusion, if able to deliver significant amounts of oxygen, would provide a potentially lifesaving therapy for patients in respiratory failure who are unable to be supported with mechanical ventilation alone, and are not candidates for extracorporeal membrane oxygenation.more » « less
-
BackgroundPersonalized hemodynamic models can accurately compute fractional flow reserve (FFR) from coronary angiograms and clinical measurements (FFR ), but obtaining patient-specific data could be challenging and sometimes not feasible. Understanding which measurements need to be patient-tuned vs. patient-generalized would inform models with minimal inputs that could expedite data collection and simulation pipelines. AimsTo determine the minimum set of patient-specific inputs to compute FFR using invasive measurement of FFR (FFR ) as gold standard. Materials and MethodsPersonalized coronary geometries ( ) were derived from patient coronary angiograms. A computational fluid dynamics framework, FFR , was parameterized with patient-specific inputs: coronary geometry, stenosis geometry, mean arterial pressure, cardiac output, heart rate, hematocrit, and distal pressure location. FFR was validated against FFR and used as the baseline to elucidate the impact of uncertainty on personalized inputs through global uncertainty analysis. FFR was created by only incorporating the most sensitive inputs and FFR additionally included patient-specific distal location. ResultsFFR was validated against FFR via correlation ( , ), agreement (mean difference: ), and diagnostic performance (sensitivity: 89.5%, specificity: 93.6%, PPV: 89.5%, NPV: 93.6%, AUC: 0.95). FFR provided identical diagnostic performance with FFR . Compared to FFR vs. FFR , FFR vs. FFR had decreased correlation ( , ), improved agreement (mean difference: ), and comparable diagnostic performance (sensitivity: 79.0%, specificity: 90.3%, PPV: 83.3%, NPV: 87.5%, AUC: 0.90). ConclusionStreamlined models could match the diagnostic performance of the baseline with a full gamut of patient-specific measurements. Capturing coronary hemodynamics depended most on accurate geometry reconstruction and cardiac output measurement.more » « less
-
AbstractOne‐dimensional (1D) cardiovascular models offer a non‐invasive method to answer medical questions, including predictions of wave‐reflection, shear stress, functional flow reserve, vascular resistance and compliance. This model type can predict patient‐specific outcomes by solving 1D fluid dynamics equations in geometric networks extracted from medical images. However, the inherent uncertainty inin vivoimaging introduces variability in network size and vessel dimensions, affecting haemodynamic predictions. Understanding the influence of variation in image‐derived properties is essential to assess the fidelity of model predictions. Numerous programs exist to render three‐dimensional surfaces and construct vessel centrelines. Still, there is no exact way to generate vascular trees from the centrelines while accounting for uncertainty in data. This study introduces an innovative framework employing statistical change point analysis to generate labelled trees that encode vessel dimensions and their associated uncertainty from medical images. To test this framework, we explore the impact of uncertainty in 1D haemodynamic predictions in a systemic and pulmonary arterial network. Simulations explore haemodynamic variations resulting from changes in vessel dimensions and segmentation; the latter is achieved by analysing multiple segmentations of the same images. Results demonstrate the importance of accurately defining vessel radii and lengths when generating high‐fidelity patient‐specific haemodynamics models.image Key pointsThis study introduces novel algorithms for generating labelled directed trees from medical images, focusing on accurate junction node placement and radius extraction using change points to provide haemodynamic predictions with uncertainty within expected measurement error.Geometric features, such as vessel dimension (length and radius) and network size, significantly impact pressure and flow predictions in both pulmonary and aortic arterial networks.Standardizing networks to a consistent number of vessels is crucial for meaningful comparisons and decreases haemodynamic uncertainty.Change points are valuable to understanding structural transitions in vascular data, providing an automated and efficient way to detect shifts in vessel characteristics and ensure reliable extraction of representative vessel radii.more » « less
-
Abstract ObjectiveAn improved understanding of the role of the leptomeningeal collateral circulation in blood flow compensation following middle cerebral artery (MCA) occlusion can contribute to more effective treatment development for ischemic stroke. The present study introduces a model of the cerebral circulation to predict cerebral blood flow and tissue oxygenation following MCA occlusion. MethodsThe model incorporates flow regulation mechanisms based on changes in pressure, shear stress, and metabolic demand. Oxygen saturation in cerebral vessels and tissue is calculated using a Krogh cylinder model. The model is used to assess the effects of changes in oxygen demand and arterial pressure on cerebral blood flow and oxygenation after MCA occlusion. ResultsAn increase from five to 11 leptomeningeal collateral vessels was shown to increase the oxygen saturation in the region distal to the occlusion by nearly 100%. Post‐occlusion, the model also predicted a loss of autoregulation and a decrease in flow to the ischemic territory as oxygen demand was increased; these results were consistent with data from experiments that induced cerebral ischemia. ConclusionsThis study highlights the importance of leptomeningeal collaterals following MCA occlusion and reinforces the idea that lower oxygen demand and higher arterial pressure improve conditions of flow and oxygenation.more » « less
An official website of the United States government

