skip to main content


Title: An ALMA Survey of M-dwarfs in the Beta Pictoris Moving Group with two new debris disc detections
ABSTRACT

Previous surveys in the far-infrared have found very few, if any, M-dwarf debris discs among their samples. It has been questioned whether M-dwarf discs are simply less common than earlier types, or whether the low detection rate derives from the wavelengths and sensitivities available to those studies. The highly sensitive, long-wavelength Atacama Large Millimetre/submillimetre Array (ALMA) can shed light on the problem. This paper presents a survey of M-dwarf stars in the young and nearby Beta Pictoris Moving Group with ALMA at Band 7 (880 μm). From the observational sample, we detect two new sub-mm excesses that likely constitute unresolved debris discs around GJ 2006 A and AT Mic A and model distributions of the disc fractional luminosities and temperatures. From the science sample of 36 M-dwarfs including AU Mic, we find a disc detection rate of 4/36 or 11.1$^{+7.4}_{-3.3}$ per cent that rises to 23.1$^{+8.3}_{-5.5}$ per cent when adjusted for completeness. We conclude that this detection rate is consistent with the detection rate of discs around G- and K-type stars and that the disc properties are also likely consistent with earlier type stars. We additionally conclude that M-dwarf stars are not less likely to host debris discs, but instead their detection requires longer wavelength and higher sensitivity observations than have previously been employed.

 
more » « less
NSF-PAR ID:
10470749
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
526
Issue:
4
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 5401-5417
Size(s):
["p. 5401-5417"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Studies of T Tauri discs inform planet formation theory; observations of variability due to occultation by circumstellar dust are a useful probe of unresolved, planet-forming inner discs, especially around faint M dwarf stars. We report observations of 2M0632, an M dwarf member of the Carina young moving group that was observed by Transiting Exoplanet Survey Satellite over two 1-yr intervals. The combined light curve contains >300 dimming events, each lasting a few hours, and as deep as 40 per cent (0.55 magnitudes). These stochastic events are correlated with a distinct, stable 1.86-d periodic signal that could be stellar rotation. Concurrent ground-based, multiband photometry show reddening consistent with interstellar medium-like dust. The star’s excess emission in the infrared and emission lines in optical and infrared spectra reveal a T Tauri-like accretion disc around the star. We confirm membership of 2M0632 in the Carina group by a Bayesian analysis of its Galactic space motion and position. We combine stellar evolution models with Gaia photometry and constraints on Teff, luminosity, and the absence of detectable lithium in the photosphere to constrain the age of the group and 2M0632 to 40–60 Myr, consistent with earlier estimates. 2M0632 joins a handful of long-lived discs which challenge the canon that disc lifetimes are ≲10 Myr. All known examples surround M dwarfs, suggesting that lower X-ray/ultraviolet irradiation and slower photoevaporation by these stars can dramatically affect disc evolution. The multiplanet systems spawned by long-lived discs probably experienced significant orbital damping and migration into close-in, resonant orbits, and perhaps represented by the TRAPPIST-1 system. 
    more » « less
  2. ABSTRACT

    We present a high-contrast imaging survey of intermediate-mass (1.75–4.5 M⊙) stars to search the most extreme stellar binaries, i.e. for the lowest mass stellar companions. Using adaptive optics at the Lick and Gemini observatories, we observed 169 stars and detected 24 candidates companions, 16 of which are newly discovered, and all but three are likely or confirmed physical companions. Despite obtaining sensitivity down to the substellar limit for 75 per cent of our sample, we do not detect any companion below 0.3 M⊙, strongly suggesting that the distribution of stellar companions is truncated at a mass ratio of qmin ≳ 0.075. Combining our results with known brown dwarf companions, we identify a low-mass companion desert to intermediate-mass stars in the range 0.02 ≲ q ≲ 0.05, which quantitatively matches the known brown dwarf desert among solar-type stars. We conclude that the formation mechanism for multiple systems operates in a largely scale-invariant manner and precludes the formation of extremely uneven systems, likely because the components of a protobinary accrete most of their mass after the initial cloud fragmentation. Similarly, the mechanism to form ‘planetary’ (q ≲ 0.02) companions likely scales linearly with stellar mass, probably as a result of the correlation between the masses of stars and their protoplanetary discs. Finally, we predict the existence of a sizable population of brown dwarf companions to low-mass stars and of a rising population of planetary-mass objects towards ${\approx}1\,M_\mathrm{Jup}$ around solar-type stars. Improvements on current instrumentation will test these predictions.

     
    more » « less
  3. ABSTRACT

    Theories of planet formation give contradicting results of how frequent close-in giant planets of intermediate mass stars (IMSs; $1.3\le M_{\star }\le 3.2\, \mathrm{M}_{\odot }$) are. Some theories predict a high rate of IMSs with close-in gas giants, while others predict a very low rate. Thus, determining the frequency of close-in giant planets of IMSs is an important test for theories of planet formation. We use the CoRoT survey to determine the absolute frequency of IMSs that harbour at least one close-in giant planet and compare it to that of solar-like stars. The CoRoT transit survey is ideal for this purpose, because of its completeness for gas-giant planets with orbital periods of less than 10 d and its large sample of main-sequence IMSs. We present a high precision radial velocity follow-up programme and conclude on 17 promising transit candidates of IMSs, observed with CoRoT. We report the detection of CoRoT–34b, a brown dwarf close to the hydrogen burning limit, orbiting a 1.1 Gyr A-type main-sequence star. We also confirm two inflated giant planets, CoRoT–35b, part of a possible planetary system around a metal-poor star, and CoRoT–36b on a misaligned orbit. We find that $0.12 \pm 0.10\, {{\ \rm per\ cent}}$ of IMSs between $1.3\le M_{\star }\le 1.6\, \mathrm{M}_{\odot }$ observed by CoRoT do harbour at least one close-in giant planet. This is significantly lower than the frequency ($0.70 \pm 0.16\, {{\ \rm per\ cent}}$) for solar-mass stars, as well as the frequency of IMSs harbouring long-period planets ($\sim 8\, {{\ \rm per\ cent}}$).

     
    more » « less
  4. ABSTRACT

    We present new ALMA Band 7 observations of the edge-on debris disc around the M1V star GSC 07396-00759. At ∼20 Myr old and in the β Pictoris Moving Group along with AU Mic, GSC 07396-00759 joins it in the handful of low-mass M-dwarf discs to be resolved in the sub-mm. With previous VLT/SPHERE scattered light observations, we present a multiwavelength view of the dust distribution within the system under the effects of stellar wind forces. We find the mm dust grains to be well described by a Gaussian torus at 70 au with a full width at half-maximum of 48 au and we do not detect the presence of CO in the system. Our ALMA model radius is significantly smaller than the radius derived from polarimetric scattered light observations, implying complex behaviour in the scattering phase function. The brightness asymmetry in the disc observed in scattered light is not recovered in the ALMA observations, implying that the physical mechanism only affects smaller grain sizes. High-resolution follow-up observations of the system would allow investigation into its unique dust features as well as provide a true coeval comparison for its smaller sibling AU Mic, singularly well-observed amongst M-dwarfs systems.

     
    more » « less
  5. ABSTRACT

    Stars form from the gravitational collapse of turbulent, magnetized molecular cloud cores. Our non-ideal MHD simulations reveal that the intrinsically anisotropic magnetic resistance to gravity during the core collapse naturally generates dense gravomagneto sheetlets within inner protostellar envelopes – disrupted versions of classical sheet-like pseudo-discs. They are embedded in a magnetically dominant background, where less dense materials flow along the local magnetic field lines and accumulate in the dense sheetlets. The sheetlets, which feed the disc predominantly through its upper and lower surfaces, are the primary channels for mass and angular momentum transfer from the envelope to the disc. The protostellar disc inherits a small fraction (up to 10 per cent) of the magnetic flux from the envelope, resulting in a disc-averaged net vertical field strength of 1–10 mG and a somewhat stronger toroidal field, potentially detectable through ALMA Zeeman observations. The inherited magnetic field from the envelope plays a dominant role in disc angular momentum evolution, enabling the formation of gravitationally stable discs in cases where the disc field is relatively well-coupled to the gas. Its influence remains significant even in marginally gravitationally unstable discs formed in the more magnetically diffusive cases, removing angular momentum at a rate comparable to or greater than that caused by spiral arms. The magnetically driven disc evolution is consistent with the apparent scarcity of prominent spirals capable of driving rapid accretion in deeply embedded protostellar discs. The dense gravomagneto sheetlets observed in our simulations may correspond to the ‘accretion streamers’ increasingly detected around protostars.

     
    more » « less