skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Relating Underlying Performance Objectives of Overground Walking to Observable Walking Mechanics using Predictive Musculoskeletal Simulations
Award ID(s):
2054343
PAR ID:
10470792
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-8829-7
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Location:
Rotterdam, Netherlands
Sponsoring Org:
National Science Foundation
More Like this
  1. Understanding the ability of particles to maneuver through disordered environments is a central problem in innumerable settings, from active matter and biology to electronics. Macroscopic particles ultimately exhibit diffusive motion when their energy exceeds the characteristic potential barrier of the random landscape. In stark contrast, wave-particle duality causes electrons in disordered media to come to rest even when the potential is weak—a remarkable phenomenon known as Anderson localization. Here, we present a hydrodynamic active system with wave-particle features, a millimetric droplet self-guided by its own wave field over a submerged random topography, whose dynamics exhibits localized statistics analogous to those of electronic systems. Consideration of an ensemble of particle trajectories reveals a suppression of diffusion when the guiding wave field extends over the disordered topography. We rationalize mechanistically the emergent statistics by virtue of the wave-mediated resonant coupling between the droplet and topography, which produces an attractive wave potential about the localization region. This hydrodynamic analog, which demonstrates how a classical particle may localize like a wave, suggests new directions for future research in various areas, including active matter, wave localization, many-body localization, and topological matter. Published by the American Physical Society2024 
    more » « less
  2. Conference Abstract 
    more » « less
  3. We propose a mechanism for low Reynolds num- ber walking (e.g., legged microscale robots). Whereas loco- motion for legged robots has traditionally been classified as dynamic (where inertia plays a role) or static (where the system is always statically stable), we introduce a new locomotion modality we call buoyancy enabled non-inertial dynamic walking in which inertia plays no role, yet the robot is not statically stable. Instead, falling and viscous drag play critical roles. This model assumes squeeze flow forces from fluid interactions combined with a well timed gait as the mechanism by which forward motion can be achieved from a reciprocating legged robot. Using two physical demonstrations of robots with Reynold’s number ranging from 0.0001 to 0.02 (a microscale robot in water and a centimeter scale robot in glycerol) we find the model qualitatively describes the motion. This model can help understand microscale locomotion and design new microscale walking robots including controlling forward and backwards motion and potentially steering these robots. 
    more » « less
  4. null (Ed.)
    Abstract The mechanisms underlying the emergence of leadership in multi-agent systems are under investigation in many areas of research where group coordination is involved. Nonverbal leadership has been mostly investigated in the case of animal groups, and only a few works address the problem in human ensembles, e.g. pedestrian walking, group dance. In this paper we study the emergence of leadership in the specific scenario of a small walking group. Our aim is to propose a rigorous mathematical methodology capable of unveiling the mechanisms of leadership emergence in a human group when leader or follower roles are not designated a priori. Two groups of participants were asked to walk together and turn or change speed at self-selected times. Data were analysed using time-dependent cross correlation to infer leader-follower interactions between each pair of group members. The results indicate that leadership emergence is due both to contextual factors, such as an individual’s position in the group, and to personal factors, such as an individual’s characteristic locomotor behaviour. Our approach can easily be extended to larger groups and other scenarios such as team sports and emergency evacuations. 
    more » « less