skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Desiccation of ecosystem-critical microbialites in the shrinking Great Salt Lake, Utah (USA)
Great Salt Lake hosts an ecosystem that is critical to migratory birds and international aquaculture, yet it is currently threatened by falling lake elevation and high lakewater salinity resulting from water diversions in the upstream watershed and the enduring megadrought in the western United States. Microbialite reefs underpin the ecosystem, hosting a surface microbial community that is estimated to contribute 30% of the lake’s primary productivity. We monitored exposure, desiccation, and bleaching over time in an area of microbialite reef. During this period, lake elevation fell by 1.8 m, and salinity increased from 11.0% to 19.5% in open-water portions of the outer reef, reaching halite saturation in hydrologically closed regions. When exposed, microbialite bleaching was rapid. Bleached microbialites are not necessarily dead, however, with communities and chlorophyll persisting beneath microbialite surfaces for several months of exposure and desiccation. However, superficial losses in the mat community resulted in enhanced microbialite weathering. In microbialite recovery experiments with bleached microbialite pieces, partial community recovery was rapid at salinities ≤ 17%. 16S and 18S rRNA gene sequencing indicated that recovery was driven by initial seeding from lakewater. At higher salinity levels, eventual accumulation of chlorophyll may reflect accumulation and preservation of lake material in halite crusts vs. true recovery. Our results indicate that increased water input should be prioritized in order to return the lake to an elevation that submerges microbialite reefs and lowers salinity levels. Without quick action to reverse diversions in the watershed, loss of pelagic microbial community members due to sustained high salinity could prevent the recovery of the ecosystem-critical microbialite surface communities in Great Salt Lake.  more » « less
Award ID(s):
1826869 1801760
PAR ID:
10470861
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
Gottstein, Sanja
Publisher / Repository:
PLOS Water
Date Published:
Journal Name:
PLOS Water
Volume:
2
Issue:
9
ISSN:
2767-3219
Page Range / eLocation ID:
e0000100
Subject(s) / Keyword(s):
Great Salt Lake microbialites microbial communities environmental change limnetic ecosystems primary productivity
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The elevation of Great Salt Lake has fallen to historic lows in recent years, exposing once submerged microbialites along the lake’s shores. Although prior studies have attempted to map microbialite locations, this has proved challenging, with mapped microbialite areas limited to accessible shoreline locations or via indirect sonographic evidence. Meanwhile, the importance of Great Salt Lake’s microbialites to the lake’s food chain has made quantifying the extent of microbialites exposed versus submerged at different lake elevations critical to lake management decisions. Low lake levels combined with seasonal high-water clarity have enabled microbialite reefs to be spotted in aerial and satellite imagery, even in deeper areas of the lake. In this study, satellite images were used to identify and map microbialite reef areas in Great Salt Lake and along its dry shores. In the south arm, submerged microbialites were easily recognized as dark green reefs against a light-colored benthic background (primarily ooid sand). Stationary microbialite mounds were distinguished from rip-up clasts or other dark-colored mobile material by comparing potential microbialite regions across several high-visibility timepoints. In this way, we identified 649 km2 (251 mi2) of putative microbialite reef area: 288 km2 (111 mi2) in the north arm, 360 km2 (139 mi2) in the south arm, of which 375 km2 (145 mi2) was mapped at a high degree of confidence. We also produced geospatial shapefiles of these areas. This map, combined with currently available lake bathymetric data, permits the estimation of the extent of microbialite reef exposed vs. submerged in various parts of the lake at different lake elevations. At the end of fall 2022, when lake level dipped to 1276.7 masl (4188.5 ft-asl) in elevation, we estimate that ~40% of the south arm microbialite reef area was exposed. 
    more » « less
  2. Abstract Coral bleaching is a well-documented and increasingly widespread phenomenon in reefs across the globe, yet there has been relatively little research on the implications for reef water column microbiology and biogeochemistry. A mesocosm heating experiment and bottle incubation compared how unbleached and bleached corals alter dissolved organic matter (DOM) exudation in response to thermal stress and subsequent effects on microbial growth and community structure in the water column. Thermal stress of healthy corals tripled DOM flux relative to ambient corals. DOM exudates from stressed corals (heated and/or previously bleached) were compositionally distinct from healthy corals and significantly increased growth of bacterioplankton, enriching copiotrophs and putative pathogens. Together these results demonstrate how the impacts of both short-term thermal stress and long-term bleaching may extend into the water column, with altered coral DOM exudation driving microbial feedbacks that influence how coral reefs respond to and recover from mass bleaching events. 
    more » « less
  3. Abstract Mass thermal bleaching events are a primary threat to coral reefs, yet the sublethal impacts, particularly on energetics and reproduction, are poorly characterized. Given that the persistence of coral populations is contingent upon the reproduction of individuals that survive disturbances, there is an urgent need to understand the sublethal effects of bleaching on reproductive output to accurately predict coral recovery rates. In 2019, the French Polynesian island of Mo’orea experienced a severe mass bleaching event accompanied by widespread coral mortality. At the most heavily impacted sites, we observedAcropora hyacinthusindividuals that were resistant to bleaching, alongside colonies that bleached but showed signs of symbiont recovery shortly after the bleaching event. We collected fragments fromA. hyacinthuscolonies five months post-bleaching and, using energetic assays and histological measurements, examined the physiological and reproductive consequences of these two distinct heat stress responses. Despite healthy appearances in both resistant and recovered corals, we found that recovered colonies had significantly reduced energy reserves compared to resistant colonies. In addition, we detected compound effects of stress on reproduction: recovered colonies displayed both a lower probability of containing gametes and lower fecundity per polyp. Our results indicate that bleaching inflicts an energetic constraint on the concurrent re-accumulation of energy reserves and development of reproductive material, with decreased reproductive potential of survivors possibly hampering overall reef resilience. These findings highlight the presence of intraspecific responses to bleaching and the importance of considering multiple trajectories for individual species when predicting population recovery following disturbance. 
    more » « less
  4. Fujimura, Atsushi (Ed.)
    Identifying processes that promote coral reef recovery and resilience is crucial as ocean warming becomes more frequent and severe. Sexual reproduction is essential for the replenishment of coral populations and maintenance of genetic diversity; however, the ability for corals to reproduce may be impaired by marine heatwaves that cause coral bleaching. In 2014 and 2015, the Hawaiian Islands experienced coral bleaching with differential bleaching susceptibility in the speciesMontipora capitata, a dominant reef-building coral in the region. We tested the hypothesis that coral bleaching resistance enhances reproductive capacity and offspring performance by examining the reproductive biology of colonies that bleached and recovered (B) and colonies that did not bleach (NB) in 2015 in the subsequent spawning seasons. The proportion of colonies that spawned was higher in 2016 than in 2017. Regardless of parental bleaching history, we found eggs with higher abnormality and bundles with fewer eggs in 2016 than 2017. While reproductive output was similar between B and NB colonies in 2016, survivorship of offspring that year were significantly influenced by the parental bleaching history (egg donor × sperm donor: B × B, B × NB, NB × B, and NB × NB). Offspring produced by NB egg donors had the highest survivorship, while offspring from previously bleached colonies had the lowest survivorship, highlighting the negative effects of bleaching on parental investment and offspring performance. While sexual reproduction continues inM.capitatapost-bleaching, gametes are differentially impacted by recovery time following a bleaching event and by parental bleaching resistance. Our results demonstrate the importance of identifying bleaching resistant individuals during and after heating events. This study further highlights the significance of maternal effects through potential egg provisioning for offspring survivorship and provides a baseline for human-assisted intervention (i.e., selective breeding) to mitigate the effects of climate change on coral reefs. 
    more » « less
  5. Seawater microorganisms play an important role in coral reef ecosystem functioning and can be influenced by biological, chemical, and physical features of reefs. As coral reefs continue to respond to environmental changes, the reef seawater microbiome has been proposed as a conservation tool for monitoring perturbations. However, the spatial variability of reef seawater microbial communities is not well studied, limiting our ability to make generalizable inferences across reefs. In order to better understand how microorganisms are distributed at multiple spatial scales, we examined seawater microbial communities in Florida Reef Tract and US Virgin Islands reef systems using a nested sampling design. On 3 reefs per reef system, we sampled seawater at regular spatial intervals close to the benthos. We assessed the microbial community composition of these waters using ribosomal RNA gene amplicon sequencing. Our analysis revealed that reef water microbial communities varied as a function of reef system and individual reefs, but communities did not differ within reefs and were not significantly influenced by benthic composition. For the reef system and inter-reef differences, abundant microbial taxa were found to be potentially useful indicators of environmental difference due to their high prevalence and variance. We further examined reef water microbial biogeography on a global scale using a secondary analysis of 5 studies, which revealed that microbial communities were more distinct with increasing geographic distance. These results suggest that biogeography is a distinguishing feature for reef water microbiomes, and that development of monitoring criteria may necessitate regionally specific sampling and analyses. 
    more » « less