skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effective seismic force retrieval from surface measurement for SH-wave reconstruction
We present a new method to obtain dynamic body force at virtual interfaces to reconstruct shear wave motions induced by a source outside a truncated computational domain. Specifically, a partial differential equation (PDE)-constrained optimization method is used to minimize the misfit between measured motions at a limited number of sensors on the ground surface and their counterparts reconstructed from optimized forces. Numerical results show that the optimized forces accurately reconstruct the targeted ground motions in the surface and the interior of the domain. The proposed optimization framework yields a particular force vector among other valid solutions allowed by the domain reduction method (DRM). Per this optimized or inverted force vector, the reconstructed wave field is identical to its reference counterpart in the domain of interest but may differ in the exterior domain from the reference one. However, we remark that the inverted solution is valid and introduce a simple post-process that can modify the solution to achieve an alternative force vector corresponding to the reference wave field. We also study the desired sensor spacing to accurately reconstruct the wave responses for a given dominant frequency of interest. We remark that the presented method is omnidirectionally applicable in terms of the incident angle of an incoming wave and is effective for any given material heterogeneity and geometry of layering of a reduced domain. The presented inversion method requires information on the wave speeds and dimensions of only a reduced domain. Namely, it does not need any informa- tion on the geophysical profile of an enlarged domain or a seismic source profile outside a reduced domain. Thus, the computational cost of the method is compact even though it leads to the high-fidelity reconstruction of wave re- sponse in the reduced domain, allowing for studying and predicting ground and structural responses using real seismic measurements.  more » « less
Award ID(s):
2053694 2044887
PAR ID:
10470901
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Soil Dynamics and Earthquake Engineering
Volume:
165
Issue:
C
ISSN:
0267-7261
Page Range / eLocation ID:
107682
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce a novel data‐informed convolutional neural network (CNN) approach that utilizes sparse ground motion measurements to accurately identify effective seismic forces in a truncated two‐dimensional (2D) domain. Namely, this paper presents the first prototype of a CNN capable of inferring domain reduction method (DRM) forces, equivalent to incident waves, across all nodes in the DRM layer. It achieves this from sparse measurement data in a multidimensional setting, even in the presence of incoherent incident waves. The method is applied to shear (SH) waves propagating into a domain truncated by a wave‐absorbing boundary condition (WABC). By effectively training the CNN using input‐layer features (surface sensor measurements) and output‐layer features (effective forces at a DRM layer), we achieve significant reductions in processing time compared to PDE‐constrained optimization methods. The numerical experiments demonstrate the method's effectiveness and robustness in identifying effective forces, equivalent to incoherent incident waves, at a DRM layer. 
    more » « less
  2. The seismic fragility of a system is the probability that the system enters a damage state under seismic ground motions with specified characteristics. Plots of the seismic fragilities with respect to scalar ground motion intensity measures are called fragility curves. Recent studies show that fragility curves may not be satisfactory measures for structural seismic performance, since scalar intensity measures cannot comprehensively characterize site seismicity. The limitations of traditional seismic intensity measures, e.g., peak ground acceleration or pseudo-spectral acceleration, are shown and discussed in detail. A bivariate vector with coordinates moment magnitude m and source-to-site distance r is proposed as an alternative seismic intensity measure. Implicitly, fragility surfaces in the (m, r)-space could be used as graphical representations of seismic fragility. Unlike fragility curves, which are functions of scalar intensity measures, fragility surfaces are characterized by two earthquake-hazard parameters, (m, r). The calculation of fragility surfaces may be computationally expensive for complex systems. Thus, as solutions to this issue, a bi-variate log-normal parametric model and an efficient calculation method, based on stochastic-reduced-order models, for fragility surfaces are proposed. 
    more » « less
  3. Lateral stiffness of structural components, such as reinforced concrete (RC) columns, plays an important role in resisting the lateral earthquake loads. The lateral stiffness relates the lateral force to the lateral deformation, having a critical effect on the accuracy of the lateral seismic response predictions. The classical methods (e.g. fiber beam–column model) to estimate the lateral stiffness require calculations from section, element, and structural levels, which is time-consuming. Moreover, the shear deformation and bond-slip effect may also need to be included to more accurately calculate the lateral stiffness, which further increases the modeling difficulties and the computational cost. To reduce the computational time and enhance the accuracy of the predictions, this article proposes a novel data-driven method to predict the laterally seismic response based on the estimated lateral stiffness. The proposed method integrates the machine learning (ML) approach with the hysteretic model, where ML is used to compute the parameters that govern the nonlinear properties of the lateral response of target structural components directly from a training set composed of experimental data (i.e. data-driven procedure) and the hysteretic model is used to directly output the lateral stiffness based on the computed parameters and then to perform the seismic analysis. We apply the proposed method to predict the lateral seismic response of various types of RC columns subjected to cyclic loading and ground motions. We present the detailed model formulation for the application, including the developments of a modified hysteretic model, a hybrid optimization algorithm, and two data-driven seismic response solvers. The results predicted by the proposed method are compared with those obtained by classical methods with the experimental data serving as the ground truth, showing that the proposed method significantly outperforms the classical methods in both generalized prediction capabilities and computational efficiency. 
    more » « less
  4. Finding an optimal design for a structural system subject to seismic actions to minimize failure probability, repair costs, and injuries to occupants, significantly contributes to the resilience of buildings in earthquake regions. This research presents a comprehensive framework for the performance-based design optimization of steel structures, incorporating the Performance-Based Earthquake Engineering (PBEE) methodology delineated in FEMA P-58 [1]. A selected set of ground motions, consistent with the seismic hazard intensity of interest, and a nonlinear finite element model, established using OpenSees, enable the assessment of the system's dynamic response. To address the computational complexity related to evaluating the probability of failure of the system during an optimization iteration when using the PBEE methodology for assessing performance, this study introduces metamodeling techniques as a substitute for the original high-fidelity nonlinear finite element model. In particular, Kriging is employed to approximate both the median and standard deviation of the Engineering Demand Parameters (EDPs) in the design domain. The parameters of the Kriging metamodels are derived from nonlinear dynamic analyses performed using the original high-fidelity model and an optimal sampling plan obtained through Latin Hypercube sampling. Under the assumption of a lognormal distribution, the metamodel is then used to generate a large number of simulated demand sets necessary for the Monte Carlo procedure adopted by FEMA P-58 to calculate the distribution of probable losses for any given value of the design variable vector. Additionally, the median and standard deviation of the fragility function modeling collapse are also approximated by a Kriging metamodel, in which the parameters are derived from an Incremental Dynamic Analysis (IDA) for any given value of the design variable vector. The scheme is illustrated in a full-scale case study consisting of the performance-based optimization of the buckling-restrained braces of a steel seismic force-resisting system in terms of expected losses and construction costs. The study demonstrates that the proposed risk-based optimization scheme effectively balances construction costs with expected financial losses from earthquakes, thus enhancing the seismic performance of the system.[1] Applied Technology Council, & National Earthquake Hazards Reduction Program (US). (2012). Seismic performance assessment of buildings. Federal Emergency Management Agency. 
    more » « less
  5. Abstract Near‐fault pulse‐type ground motions have characteristics that are substantially different from ordinary far‐field ground motions. It is essential to understand the unique effects of pulse‐type ground motions on structures and include the effects in seismic design. This paper investigates the effects of near‐fault pulse‐type ground motions on the structural response of a 3‐story steel structure with nonlinear viscous dampers using the real‐time hybrid simulation (RTHS) testing method. The structure is designed for 75% of the code‐specified design base shear strength. In the RTHS, the loop of action and reaction between the experimental and numerical partitions are executed in real time, accurately capturing the velocity pulse effects of pulse‐type ground motions. A set of 10 unscaled pulse‐type ground motions at the design basis earthquake (DBE) level is used for the RTHS. The test results validated that RTHS is a viable method for experimentally investigating the complicated structural behavior of structures with rate‐dependent damping devices, and showed that the dampers are essentially effective in earthquake hazard mitigation effects involving pulse‐type ground motions. The average peak story drift ratio under the set of pulse‐type ground motions is 1.08% radians with a COV value less than 0.3, which indicated that structural system would achieve the ASCE 7–10 seismic performance objective for Occupancy Category III structures under the DBE level pulse‐type ground motions. Additionally, a nonlinear Maxwell model for the nonlinear viscous dampers is validated for future structural reliability numerical studies involving pulse‐type ground motions. 
    more » « less