skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An earthquake-source-based metric for seismic fragility analysis
The seismic fragility of a system is the probability that the system enters a damage state under seismic ground motions with specified characteristics. Plots of the seismic fragilities with respect to scalar ground motion intensity measures are called fragility curves. Recent studies show that fragility curves may not be satisfactory measures for structural seismic performance, since scalar intensity measures cannot comprehensively characterize site seismicity. The limitations of traditional seismic intensity measures, e.g., peak ground acceleration or pseudo-spectral acceleration, are shown and discussed in detail. A bivariate vector with coordinates moment magnitude m and source-to-site distance r is proposed as an alternative seismic intensity measure. Implicitly, fragility surfaces in the (m, r)-space could be used as graphical representations of seismic fragility. Unlike fragility curves, which are functions of scalar intensity measures, fragility surfaces are characterized by two earthquake-hazard parameters, (m, r). The calculation of fragility surfaces may be computationally expensive for complex systems. Thus, as solutions to this issue, a bi-variate log-normal parametric model and an efficient calculation method, based on stochastic-reduced-order models, for fragility surfaces are proposed.  more » « less
Award ID(s):
1639669
PAR ID:
10060257
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Bulletin of Earthquake Engineering
ISSN:
1570-761X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We present a database and analyze ground motions recorded during three events that occurred as part of the July 2019 Ridgecrest earthquake sequence: a moment magnitude (M) 6.5 foreshock on a left‐lateral cross fault in the Salt Wells Valley fault zone, an M 5.5 foreshock in the Paxton Ranch fault zone, and the M 7.1 mainshock, also occurring in the Paxton Ranch fault zone. We collected and uniformly processed 1483 three‐component recordings from an array of 824 sensors spanning 10 seismographic networks. We developed site metadata using available data and multiple models for the time‐averaged shear‐wave velocity in the upper 30 m (⁠VS30⁠) and for basin depth terms. We processed ground motions using Next Generation Attenuation (NGA) procedures and computed intensity measures including spectral acceleration at a number of oscillator periods and inelastic response spectra. We compared elastic and inelastic response spectra to seismic design spectra in building codes to evaluate the damage potential of the ground motions at spatially distributed sites. Residuals of the observed spectral accelerations relative to the NGA‐West2 ground‐motion models (GMMs) show good average agreement between observations and model predictions (event terms between about −0.3 and 0.5 for peak ground acceleration to 5 s). The average attenuation with distance is also well captured by the empirical NGA‐West2 GMMs, although azimuthal variations in attenuation were observed that are not captured by the GMMs. An analysis considering directivity and fault‐slip heterogeneity for the M 7.1 event demonstrates that the dispersion in the near‐source ground‐motion residuals can be reduced. 
    more » « less
  2. The usefulness of current intensity measures (IMs) and fragilities are assessed in a setting in which the probability law of the seismic ground acceleration process is known. It is shown that typical demand parameters and IMs are weakly dependent so that fragilities defined as functions of these measures provide limited information for seismic design. 
    more » « less
  3. The usefulness of current intensity measures (IMs) and fragilities are assessed in a setting in which the probability law of the seismic ground acceleration process is known. It is shown that typical demand parameters and IMs are weakly dependent so that fragilities defined as functions of these measures provide limited information for seismic design. 
    more » « less
  4. null (Ed.)
    Rapidly growing societal needs in urban areas are increasing the demand for tall buildings with complex structural systems. Many of these buildings are located in areas characterized by high seismicity. Quantifying the seismic resilience of these buildings requires comprehensive fragility assessment that integrates iterative nonlinear dynamic analysis (NDA). Under these circumstances, traditional finite element (FE) analysis may become impractical due to its high computational cost. Soft-computing methods can be applied in the domain of NDA to reduce the computational cost of seismic fragility analysis. This study presents a framework that employs nonlinear autoregressive neural networks with exogenous input (NARX) in fragility analysis of multi-story buildings. The framework uses structural health monitoring data to calibrate a nonlinear FE model. The model is employed to generate the training dataset for NARX neural networks with ground acceleration and displacement time histories as the input and output of the network, respectively. The trained NARX networks are then used to perform incremental dynamic analysis (IDA) for a suite of ground motions. Fragility analysis is next conducted based on the results of the IDA obtained from the trained NARX network. The framework is illustrated on a twelve-story reinforced concrete building located at Oklahoma State University, Stillwater campus. 
    more » « less
  5. Performance-based procedures represent an improvement over current state-of-practice procedures that treat the assessment of seismic demand and engineering response parameters independently. Procedures used in current practice generally provide estimates of liquefaction-induced ground settlement that are inconsistent with the desired ground settlement hazard level. A recently developed probabilistic procedure to estimate liquefaction-induced ground settlement is employed to develop a new performance-based procedure that estimates ground settlement which accounts for key sources of uncertainty. The ground-motion intensity and ground settlement estimations are integrated in the proposed procedure to produce hazard curves for liquefaction-induced ground settlement. The hazard curve for ground settlement links different hazard levels with their corresponding values of ground settlement by evaluating a wide range of ground-motion intensities and site characterization parameters with their associated uncertainties. The proposed performance-based procedure also permits the evaluation of different sources of uncertainty and their effects on the ground settlement estimate. 
    more » « less