skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Level-Set and Learn: Convolutional Neural Network for Classification of Elements to Identify an Arbitrary Number of Voids in a 2D Solid Using Elastic Waves
We present a new convolutional neural network (CNN)-based element-wise classification method to detect a random number of voids in a 2D plain strain solid subjected to elastodynamics. We consider that an elastic wave source excites the solid including a random number of voids, and wave responses are measured by sensors placed around the solid. We present a CNN for resolving the inverse problem, which is formulated as an element-wise classification problem. The CNN is trained to classify each element into a regular or void element from measured wave signals. To this end, we generate training data consisting of input-layer features (i.e., measured wave signals at sensors) and output-layer features (i.e., element types of all elements). When the training data are generated, we utilize the level-set method to avoid an expensive re-meshing process, which is otherwise needed for each different configuration of voids. We also analyze how effectively the CNN performs on blind test data from a non-level-set wave solver that explicitly models the boundary of voids using an unstructured, fine mesh. Numerical results show that the suggested approach can detect the locations, shapes, and sizes of multiple elliptical and circular voids in the 2D solid domain in the test data set as well as a blind test data set.  more » « less
Award ID(s):
2053694
PAR ID:
10470902
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASCE
Date Published:
Journal Name:
Journal of Engineering Mechanics
Volume:
149
Issue:
6
ISSN:
0733-9399
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper introduces a study on the classification of aortic stenosis (AS) based on cardio-mechanical signals collected using non-invasive wearable inertial sensors. Measurements were taken from 21 AS patients and 13 non-AS subjects. A feature analysis framework utilizing Elastic Net was implemented to reduce the features generated by continuous wavelet transform (CWT). Performance comparisons were conducted among several machine learning (ML) algorithms, including decision tree, random forest, multi-layer perceptron neural network, and extreme gradient boosting. In addition, a two-dimensional convolutional neural network (2D-CNN) was developed using the CWT coefficients as images. The 2D-CNN was made with a custom-built architecture and a CNN based on Mobile Net via transfer learning. After the reduction of features by 95.47%, the results obtained report 0.87 on accuracy by decision tree, 0.96 by random forest, 0.91 by simple neural network, and 0.95 by XGBoost. Via the 2D-CNN framework, the transfer learning of Mobile Net shows an accuracy of 0.91, while the custom-constructed classifier reveals an accuracy of 0.89. Our results validate the effectiveness of the feature selection and classification framework. They also show a promising potential for the implementation of deep learning tools on the classification of AS. 
    more » « less
  2. Implementing local contextual guidance principles in a single-layer CNN architecture, we propose an efficient algorithm for developing broad-purpose representations (i.e., representations transferable to new tasks without additional training) in shallow CNNs trained on limited-size datasets. A contextually guided CNN (CG-CNN) is trained on groups of neighboring image patches picked at random image locations in the dataset. Such neighboring patches are likely to have a common context and therefore are treated for the purposes of training as belonging to the same class. Across multiple iterations of such training on different context-sharing groups of image patches, CNN features that are optimized in one iteration are then transferred to the next iteration for further optimization, etc. In this process, CNN features acquire higher pluripotency, or inferential utility for any arbitrary classification task. In our applications to natural images and hyperspectral images, we find that CG-CNN can learn transferable features similar to those learned by the first layers of the well-known deep networks and produce favorable classification accuracies. 
    more » « less
  3. Abstract We introduce a novel data‐informed convolutional neural network (CNN) approach that utilizes sparse ground motion measurements to accurately identify effective seismic forces in a truncated two‐dimensional (2D) domain. Namely, this paper presents the first prototype of a CNN capable of inferring domain reduction method (DRM) forces, equivalent to incident waves, across all nodes in the DRM layer. It achieves this from sparse measurement data in a multidimensional setting, even in the presence of incoherent incident waves. The method is applied to shear (SH) waves propagating into a domain truncated by a wave‐absorbing boundary condition (WABC). By effectively training the CNN using input‐layer features (surface sensor measurements) and output‐layer features (effective forces at a DRM layer), we achieve significant reductions in processing time compared to PDE‐constrained optimization methods. The numerical experiments demonstrate the method's effectiveness and robustness in identifying effective forces, equivalent to incoherent incident waves, at a DRM layer. 
    more » « less
  4. Markopoulos, Panos P.; Ouyang, Bing (Ed.)
    We consider the problem of unsupervised (blind) evaluation and assessment of the quality of data used for deep neural network (DNN) RF signal classification. When neural networks train on noisy or mislabeled data, they often (over-)fit to the noise measurements and faulty labels, which leads to significant performance degradation. Also, DNNs are vulnerable to adversarial attacks, which can considerably reduce their classification performance, with extremely small perturbations of their input. In this paper, we consider a new method based on L1-norm principal-component analysis (PCA) to improve the quality of labeled wireless data sets that are used for training a convolutional neural network (CNN), and a deep residual network (ResNet) for RF signal classification. Experiments with data generated for eleven classes of digital and analog modulated signals show that L1-norm tensor conformity curation of the data identifies and removes from the training data set inappropriate class instances that appear due to mislabeling and universal black-box adversarial attacks and drastically improves/restores the classification accuracy of the identified deep neural network architectures. 
    more » « less
  5. null (Ed.)
    We apply deep convolutional neural networks (CNNs) to estimate wave breaking type (e.g., non-breaking, spilling, plunging) from close-range monochrome infrared imagery of the surf zone. Image features are extracted using six popular CNN architectures developed for generic image feature extraction. Logistic regression on these features is then used to classify breaker type. The six CNN-based models are compared without and with augmentation, a process that creates larger training datasets using random image transformations. The simplest model performs optimally, achieving average classification accuracies of 89% and 93%, without and with image augmentation respectively. Without augmentation, average classification accuracies vary substantially with CNN model. With augmentation, sensitivity to model choice is minimized. A class activation analysis reveals the relative importance of image features to a given classification. During its passage, the front face and crest of a spilling breaker are more important than the back face. For a plunging breaker, the crest and back face of the wave are most important, which suggests that CNN-based models utilize the distinctive ‘streak’ temperature patterns observed on the back face of plunging breakers for classification. 
    more » « less