skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Ensemble of Neural Networks for Moist Physics Processes, Its Generalizability and Stable Integration
Abstract With the recent advances in data science, machine learning has been increasingly applied to convection and cloud parameterizations in global climate models (GCMs). This study extends the work of Han et al. (2020,https://doi.org/10.1029/2020MS002076) and uses an ensemble of 32‐layer deep convolutional residual neural networks, referred to as ResCu‐en, to emulate convection and cloud processes simulated by a superparameterized GCM, SPCAM. ResCu‐en predicts GCM grid‐scale temperature and moisture tendencies, and cloud liquid and ice water contents from moist physics processes. The surface rainfall is derived from the column‐integrated moisture tendency. The prediction uncertainty inherent in deep learning algorithms in emulating the moist physics is reduced by ensemble averaging. Results in 1‐year independent offline validation show that ResCu‐en has high prediction accuracy for all output variables, both in the current climate and in a warmer climate with +4K sea surface temperature. The analysis of different neural net configurations shows that the success to generalize in a warmer climate is attributed to convective memory and the 1‐dimensional convolution layers incorporated into ResCu‐en. We further implement a member of ResCu‐en into CAM5 with real world geography and run the neural‐network‐enabled CAM5 (NCAM) for 5 years without encountering any numerical integration instability. The simulation generally captures the global distribution of the mean precipitation, with a better simulation of precipitation intensity and diurnal cycle. However, there are large biases in temperature and moisture in high latitudes. These results highlight the importance of convective memory and demonstrate the potential for machine learning to enhance climate modeling.  more » « less
Award ID(s):
2054697
PAR ID:
10470929
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
15
Issue:
10
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce a new framework called Machine Learning (ML) based Auroral Ionospheric electrodynamics Model (ML‐AIM). ML‐AIM solves a current continuity equation by utilizing the ML model of Field Aligned Currents of Kunduri et al. (2020,https://doi.org/10.1029/2020JA027908), the FAC‐derived auroral conductance model of Robinson et al. (2020,https://doi.org/10.1029/2020JA028008), and the solar irradiance conductance model of Moen and Brekke (1993,https://doi.org/10.1029/92gl02109). The ML‐AIM inputs are 60‐min time histories of solar wind plasma, interplanetary magnetic fields (IMF), and geomagnetic indices, and its outputs are ionospheric electric potential, electric fields, Pedersen/Hall currents, and Joule Heating. We conduct two ML‐AIM simulations for a weak geomagnetic activity interval on 14 May 2013 and a geomagnetic storm on 7–8 September 2017. ML‐AIM produces physically accurate ionospheric potential patterns such as the two‐cell convection pattern and the enhancement of electric potentials during active times. The cross polar cap potentials (ΦPC) from ML‐AIM, the Weimer (2005,https://doi.org/10.1029/2004ja010884) model, and the Super Dual Auroral Radar Network (SuperDARN) data‐assimilated potentials, are compared to the ones from 3204 polar crossings of the Defense Meteorological Satellite Program F17 satellite, showing better performance of ML‐AIM than others. ML‐AIM is unique and innovative because it predicts ionospheric responses to the time‐varying solar wind and geomagnetic conditions, while the other traditional empirical models like Weimer (2005,https://doi.org/10.1029/2004ja010884) designed to provide a quasi‐static ionospheric condition under quasi‐steady solar wind/IMF conditions. Plans are underway to improve ML‐AIM performance by including a fully ML network of models of aurora precipitation and ionospheric conductance, targeting its characterization of geomagnetically active times. 
    more » « less
  2. Abstract We report on the mountain top observation of three terrestrial gamma‐ray flashes (TGFs) that occurred during the summer storm season of 2021. To our knowledge, these are the first TGFs observed in a mountaintop environment and the first published European TGFs observed from the ground. A gamma‐ray sensitive detector was located at the base of the Säntis Tower in Switzerland and observed three unique TGF events with coincident radio sferic data characteristic of TGFs seen from space. We will show an example of a “slow pulse” radio signature (Cummer et al., 2011,https://doi.org/10.1029/2011GL048099; Lu et al., 2011,https://doi.org/10.1029/2010JA016141; Pu et al., 2019,https://doi.org/10.1029/2019GL082743; Pu et al., 2020,https://doi.org/10.1029/2020GL089427), a −EIP (Lyu et al., 2016,https://doi.org/10.1002/2016GL070154; Lyu et al., 2021,https://doi.org/10.1029/2021GL093627; Wada et al., 2020,https://doi.org/10.1029/2019JD031730), and a double peak TGF associated with an extraordinarily powerful and complicated positive‐polarity sferic, where each TGF peak is possibly preceded by a short burst of stepped leader emission. 
    more » « less
  3. Abstract Characteristics of, and fundamental differences between, the radiative‐convective equilibrium (RCE) climate states following the Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) protocols in the Community Atmosphere Model version 5 (CAM5) and version 6 (CAM6) are presented. This paper explores the characteristics of clouds, moisture, precipitation and circulation in the RCE state, as well as the tropical response to surface warming, in CAM5 and CAM6 with different parameterizations. Overall, CAM5 simulates higher precipitation rates that result in larger global average precipitation, despite lower outgoing longwave radiation compared to CAM6. Differences in the structure of clouds, particularly the amount and vertical location of cloud liquid, exist between the CAM versions and can, in part, be related to distinct representations of shallow convection and boundary layer processes. Both CAM5 and CAM6 simulate similar peaks in cloud fraction, relative humidity, and cloud ice, linked to the usage of a similar deep convection parameterization. These anvil clouds rise and decrease in extent in response to surface warming. More generally, extreme precipitation, aggregation of convection, and climate sensitivity increase with warming in both CAM5 and CAM6. This analysis provides a benchmark for future studies that explore clouds, convection, and climate in CAM with the RCEMIP protocols now available in the Community Earth System Model. These results are discussed within the context of realistic climate simulations using CAM5 and CAM6, highlighting the usefulness of a hierarchical modeling approach to understanding model and parameterization sensitivities to inform model development efforts. 
    more » « less
  4. Abstract We present modeling results of tube and knot (T&K) dynamics accompanying thermospheric Kelvin Helmholtz Instabilities (KHI) in an event captured by the 2018 Super Soaker campaign (R. L. Mesquita et al., 2020,https://doi.org/10.1029/2020JA027972). Chemical tracers released by a rocketsonde on 26 January 2018 showed coherent KHI in the lower thermosphere that rapidly deteriorated within 45–90 s. Using wind and temperature data from the event, we conducted high resolution direct numerical simulations (DNS) employing both wide and narrow spanwise domains to facilitate (wide domain case) and prohibit (narrow domain case) the axial deformation of KH billows that allows tubes and knots to form. KHI T&K dynamics are shown to produce accelerated instability evolution consistent with the observations, achieving peak dissipation rates nearly two times larger and 1.8 buoyancy periods faster than axially uniform KHI generated by the same initial conditions. Rapidly evolving twist waves are revealed to drive the transition to turbulence; their evolution precludes the formation of secondary convective instabilities and secondary KHI seen to dominate the turbulence evolution in artificially constrained laboratory and simulation environments. T&K dynamics extract more kinetic energy from the background environment and yield greater irreversible energy exchange and entropy production, yet they do so with weaker mixing efficiency due to greater energy dissipation. The results suggest that enhanced mixing from thermospheric KHI T&K events could account for the discrepancy between modeled and observed mixing in the lower thermosphere (Garcia et al., 2014,https://doi.org/10.1002/2013JD021208; Liu, 2021,https://doi.org/10.1029/2020GL091474) and merits further study. 
    more » « less
  5. Abstract This letter compares the predictions of two expressions proposed for the porosity evolution in the context of rate and state friction. One (Segall & Rice, 1995,https://doi.org/10.1029/95jb02403) depends only on the sliding velocity; the other (Sleep, 1995,https://doi.org/10.1029/94jb03340) depends only on the state variable. Simulations of both are similar for velocity stepping and slide‐hold‐slide experiments. They differ significantly for normal effective stress jumps at constant sliding velocity. Segall and Rice (1995,https://doi.org/10.1029/95jb02403) predicts no change in the porosity; Sleep (1995,https://doi.org/10.1029/94jb03340) does. Simulation with a spring‐block model indicates that the magnitude of rapid slip events is essentially the same for the two formulations. Variations of porosity and induced pore pressure near rapid slip events are similar and consistent with experimental observations. Predicted porosity variations during slow slip intervals and the time at which rapid slip events occur are significantly different. The simulation indicates that changes in friction stress due to pore pressure changes exceed those due to rate and state effects. 
    more » « less