skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Impact‐Induced Seafloor Deformation From Submarine Landslides: Diagnostic of Slide Velocity?
Abstract Submarine landslides shape continental margins, transfer massive amounts of sediment downslope, and can generate deadly and destructive tsunamis. Submarine landslides are common globally, yet constraining hazard potential of future events is limited by a short historical record and a wide range of possible slide dynamics. We test a novel approach to investigate slide dynamics using properties of the deformation zone induced by a large submarine landslide along the Cascadia margin, offshore Oregon. We use a simple model of a line load on a poroelastic half space to show the deformation zone size required rapid transport and deceleration. We argue that the slide moved at high speeds, aided by low dynamic frictional resistance, suggesting this event could have generated a tsunami. This method is applicable where slide‐induced impact zones are observed.  more » « less
Award ID(s):
1945543
PAR ID:
10470964
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Faulting and earthquakes occur extensively along the flanks of the East African Rift System, including an offshore branch in the western Indian Ocean, resulting in remobilization of sediment in the form of landslides. To date, constraints on the occurrence of submarine landslides at margin scale are lacking, leaving unanswered a link between rifting and slope instability. Here, we show the first overview of landslide deposits in the post-Eocene stratigraphy of the Tanzania margin and we present the discovery of one of the biggest landslides on Earth: the Mafia mega-slide. The emplacement of multiple landslides, including the Mafia mega-slide, during the early-mid Miocene is coeval with cratonic rifting in Tanzania, indicating that plateau uplift and rifting in East Africa triggered large and potentially tsunamigenic landslides likely through earthquake activity and enhanced sediment supply. This study is a first step to evaluate the risk associated with submarine landslides in the region. 
    more » « less
  2. Abstract The exceptional transport distance of long-runout landslides requires a mechanism for reduced frictional resistance to sliding. Here, we use zircons in the frictional wear products generated during emplacement of the Sevier gravity slide (southwest Utah, USA) to identify how the source of material evolves with transport distance and discuss how changes in frictional strength are reflected in this data set. Across the ~38 km runout distance of the slide, basal wear products have unique zircon age distributions, or tectonic chronofacies, which capture changes in material sources and indicate poor mixing across the structure. Over much of this distance, basal material forms by breakdown of slide blocks, with little input from the underlying substrate. This suggests the basal slide plane has low frictional strength, buffering the substrate from deformation. We also observe a decrease in the mean age of zircons within the basal layer with increasing transport distance as abrasive wear is localized at the base of the overlying block during slip. Toward the distal portion of the slide, the amount of substrate zircons in the basal layer increases, consistent with greater frictional coupling during deceleration. Tying the unique tectonic provenance recorded by zircons within the basal layer of the Sevier gravity slide to larger deformation styles, we argue that the observed spatial evolution in frictional strength is consistent with widespread fluid pressurization. 
    more » « less
  3. Abstract The physical processes that facilitate long‐distance translation of large‐volume gravity slides remain poorly understood. To better understand these processes and the controls on runout distance, we conducted an outcrop and microstructural characterization of the Sevier gravity slide across the former land surface and summarize findings of four key sites. The Sevier gravity slide is the oldest of three mega‐scale (>1,000 km2) collapse events of the Marysvale volcanic field (Utah, USA). Field observations of intense deformation, clastic dikes, pseudotachylyte, and consistency of kinematic indicators support the interpretation of rapid emplacement during a single event. Furthermore, clastic dikes and characteristics of the slip zone suggest emplacement involved mobilization and pressurized injection of basal material. Across the runout distance, we observe evidence for progressive slip delocalization along the slide base. This manifests as centimeter‐ to decimeter‐thick cataclastic basal zones and abundant clastic dikes in the north and tens of meters thick basal zones characterized by widespread deformation of both slide blocks and underlying rock near the southern distal end of the gravity slide. Superimposed on this transition are variations in basal zone characteristics and slide geometry arising from interactions between slide blocks during dynamic wear and deposition processes and pre‐existing topography of the former land surface. These observations are synthesized into a conceptual model in which the presence of highly pressurized fluids reduced the frictional resistance to sliding during the emplacement of the Sevier gravity slide, and basal zone evolution controlled the effectiveness of dynamic weakening mechanisms across the former land surface. 
    more » « less
  4. null (Ed.)
    International Ocean Discovery Program (IODP) Expedition 372 combined two research topics: actively deforming gas hydrate–bearing landslides (IODP Proposal 841-APL) and slow slip events on subduction faults (IODP Proposal 781A-Full). This expedition included a coring and logging-while-drilling (LWD) program for Proposal 841-APL and a LWD program for Proposal 781A-Full. The coring and observatory placement for Proposal 781A-Full were completed during Expedition 375. The Expedition 372A Proceedings volume focuses only on the results related to Proposal 841-APL. The results of the Hikurangi margin drilling are found in the Expedition 372B/375 Proceedings volume. Gas hydrates have long been suspected of being involved in seafloor failure. Not much evidence, however, has been found to date for gas hydrate–related submarine landslides. Solid, ice-like gas hydrate in sediment pores is generally thought to increase seafloor strength, which is confirmed by a number of laboratory measurements. Dissociation of gas hydrate to water and overpressured gas, on the other hand, may weaken and destabilize sediments, potentially causing submarine landslides. The Tuaheni Landslide Complex (TLC) on the Hikurangi margin shows evidence for active, creeping deformation. Intriguingly, the landward edge of creeping coincides with the pinch-out of the base of gas hydrate stability on the seafloor. We therefore proposed that gas hydrate may be involved in creep-like deformation and presented several hypotheses that may link gas hydrates to slow deformation. Alternatively, creeping may not be related to gas hydrates but instead be caused by repeated pressure pulses or linked to earthquake-related liquefaction. Plans for Expedition 372A included a coring and LWD program to test our landslide hypotheses. Because of weather-related downtime, the gas hydrate–related program was reduced and we focused on a set of experiments at Site U1517 in the creeping part of the TLC. We conducted a LWD and coring program to 205 m below the seafloor through the TLC and the gas hydrate stability zone, followed by temperature and pressure tool deployments. 
    more » « less
  5. Abstract Landslide motion is often simulated with interface‐like laws able to capture changes in frictional strength caused by the growth of the pore water pressure and the consequent reduction of the effective stress normal to the plane of sliding. Here it is argued that, although often neglected, the evolution of all the 3D stress components within the basal shear zone of landslides also contributes to changes in frictional strength and must be accounted for to predict changes in seasonal velocity. For this purpose, an augmented sliding‐consolidation model is proposed which allows for the computation of excess pore pressure development and downslope sliding with any constitutive law with 3D stress evolution. Simulations of idealised infinite slope models subjected to hydrologic forcing are used to study the role of in‐situ stress conditions and stress rate multiaxiality. Specifically, a Drucker‐Prager perfectly plastic model is used to replicate frictional failure and shear deformation at the base of landslides. The model reveals that conditions amenable to the shearing of a frictional interface are met only after numerous rainfall cycles, that is, when multiaxial stress rates are suppressed. In this case, the landslide is predicted to move through a seasonal ratcheting controlled only by the effective stress component normal to the plane of sliding. By contrast, in newly formed landslides, the multiaxial stress evolution is found to produce further regimes of motion, from plastic shakedown to cyclic failure, neither of which can be captured by interface‐like frictional laws. Notably, the model suggests that a transition across these regimes can emerge in response to an aggravation of the magnitude of forcing, implying that (i) fluctuations in climate may alter the seasonal trends of motion observed today; (ii) our ability to quantify landslide‐induced risks is impaired unless proper geomechanical models are used to examine their long‐term dynamics. 
    more » « less