Abstract Subtropical seagrass meadows play a major role in the coastal carbon cycle, but the nature of air–water CO2exchanges over these ecosystems is still poorly understood. The complex physical forcing of air–water exchange in coastal waters challenges our ability to quantify bulk exchanges of CO2and water (evaporation), emphasizing the need for direct measurements. We describe the first direct measurements of evaporation and CO2flux over a calcifying seagrass meadow near Bob Allen Keys, Florida. Over the 78‐d study, CO2emissions were 36% greater during the day than at night, and the site was a net CO2source to the atmosphere of 0.27 ± 0.17 μmol m−2s−1(x̅ ± standard deviation). A quarter (23%) of the diurnal variability in CO2flux was caused by the effect of changing water temperature on gas solubility. Furthermore, evaporation rates were ~ 10 times greater than precipitation, causing a 14% increase in salinity, a potential precursor of seagrass die‐offs. Evaporation rates were not correlated with solar radiation, but instead with air–water temperature gradient and wind shear. We also confirm the role of convective forcing on night‐time enhancement and day‐time suppression of gas transfer. At this site, temperature trends are regulated by solar heating, combined with shallow water depth and relatively consistent air temperature. Our findings indicate that evaporation and air–water CO2exchange over shallow, tropical, and subtropical seagrass ecosystems may be fundamentally different than in submerged vegetated environments elsewhere, in part due to the complex physical forcing of coastal air–sea gas transfer.
more »
« less
Sparse, Empirically Optimized Quadrature for Broadband Spectral Integration
Abstract Broadband (spectrally‐integrated) radiation calculations are dominated by the expense of spectral integration, and many applications require fast parameterizations for computing radiative flux. Here we describe a novel approach using a linear weighted sum of monochromatic calculations at a small set of optimally‐chosen frequencies. The empirically‐optimized quadrature method is used to compute atmospheric boundary fluxes, net flux profiles throughout the atmosphere, heating rate profiles, and top‐of‐the‐atmosphere forcing by CO2, in the longwave for clear skies. We evaluate the method against two modern correlatedk‐distribution models and find that we can achieve comparable errors with 32 spectral points. We also examine the effect of minimizing different cost functions, and find that in order to accurately represent heating rates and CO2forcing, these quantities must be included in the cost function.
more »
« less
- Award ID(s):
- 1916908
- PAR ID:
- 10471030
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Advances in Modeling Earth Systems
- Volume:
- 15
- Issue:
- 10
- ISSN:
- 1942-2466
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Feedback from star formation is a critical component of the evolution of galaxies and their interstellar medium. At parsec scales internal to molecular clouds, however, the observed signatures of that feedback on the physical properties of CO-emitting gas have often been weak or inconclusive. We present subparsec observations of H2CO in the 30 Doradus region, which contains the massive star cluster R136 that is clearly exerting feedback on its neighboring gas. H2CO provides a direct measure of gas kinetic temperature, and we find a trend of decreasing temperature with projected distance from R136 that may be indicative of gas heating by the stars. While it has been suggested that mechanical heating affects H2CO-measured temperature, we do not observe any correlation betweenTKand line width. The lack of an enhancement in mechanical feedback close to R136 is consistent with the absence of a radial trend in gravitational boundedness seen the Atacama Large Millimeter/submillimeter Array CO observations. Estimates of cosmic-ray flux in the region are quite uncertain, but can plausibly explain the observed temperatures if R136 itself is the dominant local source of energetic protons. The observations presented here are also consistent with the H2CO-emitting gas near R136 being dominated by direct radiation from R136 and photoelectric heating in the photodissociation regions.more » « less
-
Abstract Mid-infrared spectroscopy is one of the few ways to observe the composition of the terrestrial planet-forming zone, the inner few astronomical units, of protoplanetary disks. The species currently detected in the disk atmosphere, for example, CO, CO2, H2O, and C2H2, are theoretically enough to constrain the C/O ratio on the disk surface. However, thermochemical models have difficulties in reproducing the full array of detected species in the mid-infrared simultaneously. In an effort to get closer to the observed spectra, we have included water UV-shielding as well as more efficient chemical heating into the thermochemical code Dust and Lines. We find that both are required to match the observed emission spectrum. Efficient chemical heating, in addition to traditional heating from UV photons, is necessary to elevate the temperature of the water-emitting layer to match the observed excitation temperature of water. We find that water UV-shielding stops UV photons from reaching deep into the disk, cooling down the lower layers with a higher column. These two effects create a hot emitting layer of water with a column of 1–10 × 1018cm−2. This is only 1%–10% of the water column above the dustτ= 1 surface at mid-infrared wavelengths in the models and represents <1% of the total water column.more » « less
-
Radiative forcing by carbon dioxide depends on the difference between surface and stratospheric temperature scaled by the logarithm of its concentration (Wilson and Gea-Banacloche 2012; Jeevanjee et al. 2021). This relationship arises due to the cooling-to-space theory or theτ= 1 law, where all emission of infrared radiation originates from the atmospheric pressure level where the gas reaches sufficient optical thickness (in the case of CO2, in the stratosphere). Here we develop theoretical understanding of forcing by other well-mixed greenhouse gases including methane (CH4), nitrous oxide (N2O), and chlorofluorocarbons (CFCs). Radiative forcing by an optically thin absorber (e.g., CFC-12) is governed by emission throughout the troposphere and scaled by the total change in gas concentration, such that a linear increase in gas abundance yields a linear increase in forcing. We examine the factors that control the magnitude of radiative forcing, demonstrating analytically that CFC-12 is a stronger per-molecule absorber than CO2due to its larger average cross-section, rather than its band width or spectral position. Application in idealized atmospheres with simplified lapse rates illustrates how radiative forcing by optically thin gases depends almost linearly on lapse rate. Finally, gases that are both optically thin and optically thick across their absorption spectrum, such as N2O and CH4, can be understood as a combination of the two regimes, yielding a super-logarithmic relationship to concentration. Our theory is in excellent agreement with full-physics line-by-line calculations in atmospheres with and without spectral overlap by water vapormore » « less
-
Abstract Rivers and streams play an important role within the global carbon cycle, in part through emissions of carbon dioxide (CO2) to the atmosphere. However, the sources of this CO2and their spatiotemporal variability are difficult to constrain. Recent work has highlighted the role of carbonate buffering reactions that may serve as a source of CO2in high alkalinity systems. In this study, we seek to develop a quantitative framework for the role of carbonate buffering in the fluxes and spatiotemporal patterns of CO2and the stable and radio‐ isotope composition of dissolved inorganic carbon (DIC). We incorporate DIC speciation calculations of carbon isotopologues into a stream network CO2model and perform a series of simulations, ranging from the degassing of a groundwater seep to a hydrologically‐coupled 5th‐order stream network. We find that carbonate buffering reactions contribute >60% of emissions in high‐alkalinity, moderate groundwater‐CO2environments. However, atmosphere equilibration timescales of CO2are minimally affected, which contradicts hypotheses that carbonate buffering maintains high CO2across Strahler orders in high alkalinity systems. In contrast, alkalinity dramatically increases isotope equilibration timescales, which acts to decouple CO2and DIC variations from the isotopic composition even under low alkalinity. This significantly complicates a common method for carbon source identification. Based on similar impacts on atmospheric equilibration for stable and radio‐ carbon isotopologues, we develop a quantitative method for partitioning groundwater and stream corridor carbon sources in carbonate‐dominated watersheds. Together, these results provide a framework to guide fieldwork and interpretations of stream network CO2patterns across variable alkalinities.more » « less
An official website of the United States government
