Opening up data produced by the Internet of Things (IoT) and mobile devices for public utilization can maximize their economic value. Challenges remain in the trustworthiness of the data sources and the security of the trading process, particularly when there is no trust between the data providers and consumers. In this paper, we propose DEXO, a decentralized data exchange mechanism that facilitates secure and fair data exchange between data consumers and distributed IoT/mobile data providers at scale, allowing the consumer to verify the data generation process and the providers to be compensated for providing authentic data, with correctness guarantees from the exchange platform. To realize this, DEXO extends the decentralized oracle network model that has been successful in the blockchain applications domain to incorporate novel hardware-cryptographic co-design that harmonizes trusted execution environment, secret sharing, and smart contract-assisted fair exchange. For the first time, DEXO ensures end-to-end data confidentiality, source verifiability, and fairness of the exchange process with strong resilience against participant collusion. We implemented a prototype of the DEXO system to demonstrate feasibility. The evaluation shows a moderate deployment cost and significantly improved blockchain operation efficiency compared to a popular data exchange mechanism.
more »
« less
A Blockchain based Framework for Secure and Decentralized Energy Trading in a Community
Blockchain is a decentralized, digital, and distributed ledger which allows transparent and secure information sharing among the peer-to-peer network. It eliminates the need for a centralized trusted party and, though it was introduced as the backbone technology for cryptocurrencies but has proved to be a promising and revolutionary technology for almost all global industries. The application of blockchain technology in the energy sector proposes a paradigm of solutions to problems of different levels of complexity in the traditional energy ecosystem. Extensive research has been proposed to exploit the inherent benefits of blockchain technology for the integration of distributed energy sources and facilitate peer-to-peer energy trading. This paper proposes a blockchain-based architecture to facilitate secure and decentralized energy trading generated from renewable energy sources. The solution utilizes the Ethereum blockchain and Smart Contracts for energy trading among the members of a small community without any trusted third entity and adopts features to achieve data integrity and confidentiality, and user identity privacy.
more »
« less
- Award ID(s):
- 2029295
- PAR ID:
- 10471039
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-3650-4
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Location:
- Orlando, FL, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)The current centralized model of the electricity market is not efficient in performing distributed energy transactions required for the transactive smart grid. One of the prominent solutions to this issue is to integrate blockchain technologies, which promise transparent, tamper-proof, and secure transaction systems specifically suitable for the decentralized and distributed energy markets. Blockchain has already been shown to successfully operate in a microgrid peer-to-peer (P2P) energy market. The prime determinant of different blockchain implementations is the consensus algorithm they use to reach consensus on which blocks/transactions to accept as valid in a distributed environment. Although different blockchain implementations have been proposed independently for P2P energy market in the microgrid, quantitative experimental analyses and comparison of the consensus algorithms that the different blockchains may use for energy markets, has not been studied. Identifying the right consensus algorithm to use is essential for scalability and operation of the energy market. To this end, we evaluate three popular consensus algorithms: (i) proof of work (PoW), (ii) proof of authority (PoA), and (iii) Istanbul Byzantine fault tolerance (IBFT), running them on a network of nodes set up using a network of docker nodes to form a microgrid energy market. Using a series of double auctions, we assess each algorithm's viability using different metrics, such as time to reach consensus and scalability. The results indicate that PoA is the most efficient and scalable consensus algorithm to hold double auctions in the smart grid. We also identified the minimum hardware specification necessary for devices such as smart meters, which may run these consensus algorithmsmore » « less
-
The current centralized model of the electricity market is not efficient in performing distributed energy transactions required for the transactive smart grid. One of the prominent solutions to this issue is to integrate blockchain technologies, which promise transparent, tamper-proof, and secure transaction systems specifically suitable for the decentralized and distributed energy markets. Blockchain has already been shown to successfully operate in a microgrid peer-to-peer (P2P) energy market. The prime determinant of different blockchain implementations is the consensus algorithm they use to reach consensus on which blocks/transactions to accept as valid in a distributed environment. Although different blockchain implementations have been proposed independently for P2P energy market in the microgrid, quantitative experimental analyses and comparison of the consensus algorithms that the different blockchains may use for energy markets, has not been studied. Identifying the right consensus algorithm to use is essential for scalability and operation of the energy market. To this end, we evaluate three popular consensus algorithms: (i) proof of work (PoW), (ii) proof of authority (PoA), and (iii) Istanbul Byzantine fault tolerance (IBFT), running them on a network of nodes set up using a network of docker nodes to form a microgrid energy market. Using a series of double auctions, we assess each algorithm’s viability using different metrics, such as time to reach consensus and scalability. The results indicate that PoA is the most efficient and scalable consensus algorithm to hold double auctions in the smart grid. We also identified the minimum hardware specification necessary for devices such as smart meters, which may run these consensus algorithms.more » « less
-
Utilizing distributed renewable and energy storage resources via peer-to-peer (P2P) energy trading has long been touted as a solution to improve energy system’s resilience and sustainability. Consumers and prosumers (those who have energy generation resources), however, do not have expertise to engage in repeated P2P trading, and the zero-marginal costs of renewables present challenges in determining fair market prices. To address these issues, we propose a multi-agent reinforcement learning (MARL) framework to help automate consumers’ bidding and management of their solar PV and energy storage resources, under a specific P2P clearing mechanism that utilizes the so-called supply-demand ratio. In addition, we show how the MARL framework can integrate physical network constraints to realize decentralized voltage control, hence ensuring physical feasibility of the P2P energy trading and paving ways for real-world implementations.more » « less
-
null (Ed.)Blockchain is the technology used by developers of cryptocurrencies, like Bitcoin, to enable exchange of financial “coins” between participants in the absence of a trusted third party to ensure the transaction, such as is typically done by governments. Blockchain has evolved to become a generic approach to store and process data in a highly decentralized and secure way. In this article, we review blockchain concepts and use cases, and discuss the challenges in using them from a governmental viewpoint. We begin with reviewing the categories of blockchains, the underlying mechanisms, and why blockchains can achieve their security goals. We then review existing known governmental use cases by regions. To show both technical and deployment details of blockchain adoption, we study a few representative use cases in the domains of healthcare and energy infrastructures. Finally, the review of both technical details and use cases helps us summarize the adoption and technical challenges of blockchains.more » « less
An official website of the United States government

