skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optomechanical Accelerometers for Geodesy
We present a novel optomechanical inertial sensor for low-frequency applications and corresponding acceleration measurements. This sensor has a resonant frequency of 4.715 (1) Hz, a mechanical quality factor of 4.76(3) × 105, a test mass of 2.6 g, and a projected noise floor of approximately 5 × 10−11 ms−2/Hz at 1 Hz. Such performance, together with its small size, low weight, reduced power consumption, and low susceptibility to environmental variables such as magnetic field or drag conditions makes it an attractive technology for future space geodesy missions. In this paper, we present an experimental demonstration of low-frequency ground seismic noise detection by direct comparison with a commercial seismometer, and data analysis algorithms for the identification, characterization, and correction of several noise sources.  more » « less
Award ID(s):
2045579
PAR ID:
10471072
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Remote Sensing
Volume:
14
Issue:
17
ISSN:
2072-4292
Page Range / eLocation ID:
4389
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Low-frequency and 1/f noise are common measurement limitations that arise in a variety of physical processes. Mitigation methods for these noises are dependent on their source. Here, we present a method for removing 1/f noise of optical origin using a micro-cavity Fabry–Pérot (FP) interferometer. A mechanical modulation of the FP cavity length was applied to a previously studied opto-mechanical sensor. It effectively mimics an up-conversion of the laser frequency, shifting signals to a region where lower white-noise sources dominate and 1/f noise is not present. Demodulation of this signal shifts the results back to the desired frequency range of observation with the reduced noise floor of the higher frequencies. This method was found to improve sensitivities by nearly two orders of magnitude at 1 Hz and eliminated 1/f noise in the range from 1 Hz to 4 kHz. A mathematical model for low-finesse FP cavities is presented to support these results. This study suggests a relatively simple and efficient method for 1/f noise suppression and improving the device sensitivity of systems with an FP interferometer readout. 
    more » « less
  2. We present measurements of an optomechanical accelerometer for monitoring low-frequency noise in gravitational wave detectors, such as ground motion. Our device measures accelerations by tracking the test-mass motion of a 4.7 Hz mechanical resonator using a heterodyne interferometer. This resonator is etched from monolithic fused silica, an under-explored design in low-frequency sensors, allowing a device with a noise floor competitive with existing technologies but with a lighter and more compact form. In addition, our heterodyne interferometer is a compact optical assembly that can be integrated directly into the mechanical resonator wafer to further reduce the overall size of our accelerometer. We anticipate this accelerometer to perform competitively with commercial seismometers, and benchtop measurements show a noise floor reaching 82 pico-g Hz−1/2 sensitivities at 0.4 Hz. Furthermore, we present the effects of air pressure, laser fluctuations, and temperature to determine the stability requirements needed to achieve thermally limited measurements. 
    more » « less
  3. Embedded differential temperature sensors can be utilized to monitor the power consumption of circuits, taking advantage of the inherent on-chip electrothermal coupling. Potential applications range from hardware security to linearity, gain/bandwidth calibration, defect-oriented testing, and compensation for circuit aging effects. This paper introduces the use of on-chip differential temperature sensors as part of a wireless Internet of Things system. A new low-power differential temperature sensor circuit with chopped cascode transistors and switched-capacitor integration is described. This design approach leverages chopper stabilization in combination with a switched-capacitor integrator that acts as a low-pass filter such that the circuit provides offset and low-frequency noise mitigation. Simulation results of the proposed differential temperature sensor in a 65 nm complementary metal-oxide-semiconductor (CMOS) process show a sensitivity of 33.18V/°C within a linear range of ±36.5m°C and an integrated output noise of 0.862mVrms (from 1 to 441.7 Hz) with an overall power consumption of 0.187mW. Considering a figure of merit that involves sensitivity, linear range, noise, and power, the new temperature sensor topology demonstrates a significant improvement compared to state-of-the-art differential temperature sensors for on-chip monitoring of power dissipation. 
    more » « less
  4. Metrology experiments can be limited by the noise produced by the laser involved via small fluctuations in the laser’s power or frequency. Typically, active power stabilization schemes consisting of an in-loop sensor and a feedback control loop are employed. Those schemes are fundamentally limited by shot noise coupling at the in-loop sensor. In this Letter, we propose to use the optical spring effect to passively stabilize the classical power fluctuations of a laser beam. In a proof of principle experiment, we show that the relative power noise of the laser is stabilized from approximately 2 × 10−5Hz−1/2to a minimum value of 1.6 × 10−7Hz−1/2, corresponding to the power noise reduction by a factor of 125. The bandwidth at which stabilization occurs ranges from 400 Hz to 100 kHz. The work reported in this Letter further paves the way for high power laser stability techniques which could be implemented in optomechanical experiments and in gravitational wave detectors. 
    more » « less
  5. null (Ed.)
    This paper presents a reverse electrowetting-on-dielectric (REWOD) energy harvester integrated with rectifier, boost converter, and charge amplifier that is, without bias voltage, capable of powering wearable sensors for monitoring human health in real-time. REWOD has been demonstrated to effectively generate electrical current at a low frequency range (< 3 Hz), which is the frequency range for various human activities such as walking, running, etc. However, the current generated from the REWOD without external bias source is insufficient to power such motion sensors. In this work, to eventually implement a fully self-powered motion sensor, we demonstrate a novel bias-free REWOD AC generation and then rectify, boost, and amplify the signal using commercial components. The unconditioned REWOD output of 95–240 mV AC is generated using a 50 μL droplet of 0.5M NaCl electrolyte and 2.5 mm of electrode displacement from an oscillation frequency range of 1–3 Hz. A seven-stage rectifier using Schottky diodes having a forward voltage drop of 135–240 mV and a forward current of 1 mA converts the generated AC signal to DC voltage. ∼3 V DC is measured at the boost converter output, proving the system could function as a self-powered motion sensor. Additionally, a linear relationship of output DC voltage with respect to frequency and displacement demonstrates the potential of this REWOD energy harvester to function as a self-powered wearable motion sensor. 
    more » « less