skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Variability in terrestrial characteristics and erosion rates on the Alaskan Beaufort Sea coast
Abstract Arctic coastal environments are eroding and rapidly changing. A lack of pan-Arctic observations limits our ability to understand controls on coastal erosion rates across the entire Arctic region. Here, we capitalize on an abundance of geospatial and remotely sensed data, in addition to model output, from the North Slope of Alaska to identify relationships between historical erosion rates and landscape characteristics to guide future modeling and observational efforts across the Arctic. Using existing datasets from the Alaska Beaufort Sea coast and a hierarchical clustering algorithm, we developed a set of 16 coastal typologies that captures the defining characteristics of environments susceptible to coastal erosion. Relationships between landscape characteristics and historical erosion rates show that no single variable alone is a good predictor of erosion rates. Variability in erosion rate decreases with increasing coastal elevation, but erosion rate magnitudes are highest for intermediate elevations. Areas along the Alaskan Beaufort Sea coast (ABSC) protected by barrier islands showed a three times lower erosion rate on average, suggesting that barrier islands are critical to maintaining mainland shore position. Finally, typologies with the highest erosion rates are not broadly representative of the ABSC and are generally associated with low elevation, north- to northeast-facing shorelines, a peaty pebbly silty lithology, and glaciomarine deposits with high ice content. All else being equal, warmer permafrost is also associated with higher erosion rates, suggesting that warming permafrost temperatures may contribute to higher future erosion rates on permafrost coasts. The suite of typologies can be used to guide future modeling and observational efforts by quantifying the distribution of coastlines with specific landscape characteristics and erosion rates.  more » « less
Award ID(s):
1927553
PAR ID:
10471137
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research Letters
Volume:
18
Issue:
11
ISSN:
1748-9326
Format(s):
Medium: X Size: Article No. 114050
Size(s):
Article No. 114050
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset documents the location and characteristics of 185 exotic tundra boulders found on the North Slope of Alaska, spanning observations from 1826 to 2025. These boulders—scattered across coastal tundra, estuarine margins, and barrier islands—represent a persistent but enigmatic feature of the Arctic landscape. Their lithologies, which include granite, quartzite, diabase, dolomite, chert, and gneiss, are exotic to the region and are widely interpreted to be ice-rafted debris deposited during Pleistocene highstands of the Arctic Ocean. Spatial and lithologic patterns suggest an origin in the Canadian Arctic Archipelago and Mackenzie River basin, transported westward by sea ice or icebergs during glacial periods. The dataset integrates georeferenced boulder locations from early exploration accounts (e.g., Leffingwell 1919; Stefansson 1910, Franklin and Richardson 1828), mid-century field surveys (MacCarthy 1958), geologic interpretations of offshore facies and provenance (Rodeick 1979) and USGS (U.S. Geological Survey) engineering geological maps (1980s), and modern field observations from the 2000s–2020s. Boulder characteristics—such as lithology, surface striations, and faceting—are included where available. These observations contribute to understanding of likely saline permafrost distribution, Arctic coastal dynamics, sea-level history, and the paleogeography of iceberg and sea-ice transport. They also provide a rare terrestrial window into ice-rafted sedimentation processes typically studied in marine environments. All data are curated in a comma separated spreadsheet with associated metadata to support future geomorphological, paleoclimatic, and sea-level modeling studies. The complete list of references is provided below: Barnes, P.W., 1982. Marine Ice-Pushed Boulder Ridge, Beaufort Sea, Alaska. ARCTIC 35, 312–316. https://doi.org/10.14430/arctic2330 Brigham, O.K., 1985. Marine stratigraphy and aaino-acid geochronology of the Gublk Fomatlon, western Arctic Coastal Plain, Alaska. USGS Open File Report 381. Dease, P.W., Simpson, T., 1838. An Account of the Recent Arctic Discoveries by Messrs. Dease and T. Simpson. The Journal of the Royal Geographical Society of London 8, 213–225. Franklin, J., Richardson, J., 1828. Narrative of a Second Expedition to the Shores of the Polar Sea, in the Years 1825, 1826, and 1827. Carey, Lea and Carey. Gibbs, A.E., Richmond, B.M., 2009. Oblique aerial photography of the Arctic coast of Alaska, Nulavik to Demarcation Point, August 7-10, 2006. US Geological Survey. Hopkins, D.M., Hartz, R.W., 1978. Coastal morphology, coastal erosion, and barrier islands of the Beaufort Sea, Alaska. US Geological Survey,. Jorgenson, M.T., 2011. Coastal region of northern Alaska, Guidebook to permafrost and related features (No.GB 10). Alaska Division of Geological and Geophysical Surveys. https://doi.org/10.14509/22762 McCarthy, G.R., 1958. Glacial Boulders on the Arctic Coast of Alaska. ARCTIC 11, 70–85. https://doi.org/10.14430/arctic3734 Naidu, A., Mowatt, T., 1992. Origin of gravels from the southern coast and continental shelf of the Beaufort Sea, Arctic Alaska, in: 1992 International Conference on Arctic Margins Proceedings Programs with Abstracts. pp. 351–356. O’Sullivan, J.B., 1961. Quaternary geology of the Arctic Coastal Plain, northern Alaska: Ames, Iowa, Iowa State University of Science and Technology, Ph.D. dissertation, 191 p., illust., maps. Iowa State University. Rawlinson, S.E., 1993. Surficial geology and morphology of the Alaskan central Arctic Coastal Plain (No. RI 93-1). Alaska Division of Geological and Geophysical Surveys. https://doi.org/10.14509/2484 Reimnitz, E., Ross, R., 1979. Lag deposits of boulders in Stefansson Sound, Beaufort Sea, Alaska (No.79–1205), Open-File Report. U.S. Geological Survey,. https://doi.org/10.3133/ofr791205 Rodeick, C.A., 1979. The origin, distribution, and depositional history of gravel deposits on the Beaufort Sea Continental Shelf, Alaska (No. 79–234), Open-File Report. U.S. Geological Survey,. https://doi.org/10.3133/ofr79234 Schrader, F.C., Peters, W.J., 1904. A reconnaissance in northern Alaska across the Rocky Mountains, along Koyukuk, John, Anaktuvuk, and Colville Rivers, and the Arctic coast to Cape Lisburne, in 1901, with notes (USGS Numbered Series No. 20), Professional Paper. U.S. Geological Survey, Washington, D.C. https://doi.org/10.3133/pp20 Simpson, 1855. Observations on the western Esquimaux and the country they inhabit?: from notes taken during two years at Point Barrow | CiNii Research [WWW Document]. URL https://cir.nii.ac.jp/crid/1130000795332231552 (accessed 6.10.23). Smith, P.S., Mertie, J.B., 1930. Geology and mineral resources of northwestern Alaska. USGS Report 1. Stefansson, V., 1910. Notes from the Arctic. Am. Geogr. SOC. Bull 42, 460–1. Williams, J.R., 1983. Engineering-geologic maps of northern Alaska, Wainwright quadrangle (No. 83–457), Open-File Report. U.S. Geological Survey. https://doi.org/10.3133/ofr83458 Williams, J.R., Carter, L.D., 1984. Engineering-geologic maps of northern Alaska, Barrow quadrangle (No.84–124), Open-File Report. U.S. Geological Survey. https://doi.org/10.3133/ofr84126 Williams, R.J., 1983. Engineering-geologic maps of northern Alaska, Meade River quadrangle (No. 83–294), Open-File Report. U.S. Geological Survey. https://doi.org/10.3133/ofr83325 Wolf, S.C., Reimnitz, E., Barnes, P.W., 1985. Pleistocene and Holocene seismic stratigraphy between the Canning River and Prudhoe Bay, Beaufort Sea, Alaska. US Geological Survey,. de Koven Leffingwell, E., 1908. Flaxman Island, a Glacial Remnant. The Journal of Geology 16, 56–63. https://doi.org/10.1086/621490 de Koven Leffingwell, E., 1919. The Canning river region, northern Alaska (No. 109). US Government Printing Office. 
    more » « less
  2. Thoman, R.L.; Richter-Menge, J.; Druckenmiller, M.L. (Ed.)
    Since the early 2000s, observations from 14 coastal permafrost sites have been updated, providing a synopsis of how changes in the Arctic System are intensifying the dynamics of permafrost coasts in the 21st Century. Observations from all but 1 of the 14 permafrost coastal sites around the Arctic indicate that decadal-scale erosion rates are increasing. The US and Canadian Beaufort Sea coasts have experienced the largest increases in erosion rates since the early-2000s. The mean annual erosion rate in these regions has increased by 80 to 160 % at the five sites with available data, with sites in the Canadian Beaufort Sea experiencing the largest relative increase. The sole available site in the Greenland Sea, on southern Svalbard, indicates an increase in mean annual erosion rates by 66 % since 2000, due primarily to a reduction in nearshore sediment supply from glacial recession. At the five sites along the Barents, Kara, and Laptev Seas in Siberia, mean annual erosion rates increased between 33 and 97 % since the early to mid-2000s. The only site to experience a decrease in mean annual erosion (- 40%) was located in the Chukchi Sea in Alaska. Interestingly, the other site in the Chukchi Sea experienced one of the highest increases in mean annual erosion (+160%) over the same period. In general, a considerable increase in the variability of erosion and deposition intensity was also observed along most of the sites. 
    more » « less
  3. Abstract The thawing of permafrost in the Arctic has led to an increase in coastal land loss, flooding, and ground subsidence, seriously threatening civil infrastructure and coastal communities. However, a lack of tools for synthetic hazard assessment of the Arctic coast has hindered effective response measures. We developed a holistic framework, the Arctic Coastal Hazard Index (ACHI), to assess the vulnerability of Arctic coasts to permafrost thawing, coastal erosion, and coastal flooding. We quantified the coastal permafrost thaw potential (PTP) through regional assessment of thaw subsidence using ground settlement index. The calculations of the ground settlement index involve utilizing projections of permafrost conditions, including future regional mean annual ground temperature, active layer thickness, and talik thickness. The predicted thaw subsidence was validated through a comparison with observed long-term subsidence data. The ACHI incorporates the PTP into seven physical and ecological variables for coastal hazard assessment: shoreline type, habitat, relief, wind exposure, wave exposure, surge potential, and sea-level rise. The coastal hazard assessment was conducted for each 1 km2coastline of North Slope Borough, Alaska in the 2060s under the Representative Concentration Pathway 4.5 and 8.5 forcing scenarios. The areas that are prone to coastal hazards were identified by mapping the distribution pattern of the ACHI. The calculated coastal hazards potential was subjected to validation by comparing it with the observed and historical long-term coastal erosion mean rates. This framework for Arctic coastal assessment may assist policy and decision-making for adaptation, mitigation strategies, and civil infrastructure planning. 
    more » « less
  4. null (Ed.)
    Accelerating erosion of the Alaska Beaufort Sea coast is increasing inputs of organic matter from land to the Arctic Ocean, and improved estimates of organic matter stocks in eroding coastal permafrost are needed to assess their mobilization rates under contemporary conditions. We collected three permafrost cores (4.5–7.5 m long) along a geomorphic gradient near Drew Point, Alaska, where recent erosion rates average 17.2 m year −1 . Down-core patterns indicate that organic-rich soils and lacustrine sediments (12–45% total organic carbon; TOC) in the active layer and upper permafrost accumulated during the Holocene. Deeper permafrost (below 3 m elevation) mainly consists of Late Pleistocene marine sediments with lower organic matter content (∼1% TOC), lower C:N ratios, and higher δ 13 C values. Radiocarbon-based estimates of organic carbon accumulation rates were 11.3 ± 3.6 g TOC m −2  year −1 during the Holocene and 0.5 ± 0.1 g TOC m −2  year −1 during the Late Pleistocene (12–38 kyr BP). Within relict marine sediments, porewater salinities increased with depth. Elevated salinity near sea level (∼20–37 in thawed samples) inhibited freezing despite year-round temperatures below 0°C. We used organic matter stock estimates from the cores in combination with remote sensing time-series data to estimate carbon fluxes for a 9 km stretch of coastline near Drew Point. Erosional fluxes of TOC averaged 1,369 kg C m −1  year −1 during the 21st century (2002–2018), nearly doubling the average flux of the previous half-century (1955–2002). Our estimate of the 21st century erosional TOC flux year −1 from this 9 km coastline (12,318 metric tons C year −1 ) is similar to the annual TOC flux from the Kuparuk River, which drains a 8,107 km 2 area east of Drew Point and ranks as the third largest river on the North Slope of Alaska. Total nitrogen fluxes via coastal erosion at Drew Point were also quantified, and were similar to those from the Kuparuk River. This study emphasizes that coastal erosion represents a significant pathway for carbon and nitrogen trapped in permafrost to enter modern biogeochemical cycles, where it may fuel food webs and greenhouse gas emissions in the marine environment. 
    more » « less
  5. Abstract Barrier islands are landscape features that protect coastlines by reducing wave energy and erosion. Quantifying vegetation-topographic interactions between adjacent habitats are essential for predicting long-term island response and resilience to sea-level rise and disturbance. To understand the effects of dune dynamics on adjacent interior island ecosystem processes, we quantified how sediment availability and previous disturbance regime interact with vegetation to influence dune building and ease of seawater and sediment movement into the island interior on two US mid-Atlantic coast barrier islands. We conducted field surveys of sediment accretion, vegetative cover, and soil characteristics in dune and swale habitats. Digital elevation models provided assessment of water flow resistance from the mean high water mark into the island interior. We found that geographic location impacted sediment accretion rates andPanicum amarum(a species increasing in abundance over time in the Virginia barrier islands) accreted sediment at a significantly lower rate compared to other dune grasses. Dune elevation impacted the ease of seawater flow into the island interior, altering soil chlorides, annual net primary productivity, and soil carbon and nitrogen. Our work demonstrates the importance of incorporating biological processes and cross-island connectivity into future scenario modeling and predictions of rising sea-levels and increased disturbance. 
    more » « less