skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Webs of intrigue: museum genomics elucidate relationships of the marronoid spider clade (Araneae)
Abstract Relationships among spider families that lack support through other lines of evidence (e.g., morphology) have recently been uncovered through molecular phylogenetics. One such group is the “marronoid” clade, which contains about 3,400 described species in 9 families. Marronoids run the gamut of life history strategies, with social species, species producing a variety of silk types, and species occurring in a range of extreme environments. Despite recognition of the ecological variability in the group, there remains uncertainty about family- level relationships, leaving diverse ecologies without an evolutionary context. The phylogenies produced to date have relatively low nodal support, there are few defined morphological synapomorphies, and the internal relationships of many families remain unclear. We use 93 exemplars from all marronoid families and ultraconserved element loci captured in silico from a combination of 48 novel low-coverage whole genomes and genomic data from the Sequence Read Archive (SRA) to produce a 50% occupancy matrix of 1,277 loci from a set of ultraconserved element probes. These loci were used to infer a phylogeny of the marronoid clade and to evaluate the familial relationships within the clade, and were combined with single-locus (Sanger) legacy data to further increase taxonomic sampling. Our results indicate a clearly defined and well-supported marronoid clade and provide evidence for both monophyly and paraphyly within the currently defined families of the clade. We propose taxonomic changes in accordance with the resulting phylogenetic hypothesis, including elevating Cicurinidae (restored status) and Macrobunidae (new rank).  more » « less
Award ID(s):
2026623
PAR ID:
10471165
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Insect Systematics and Diversity
Volume:
7
Issue:
5
ISSN:
2399-3421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Using genetic, morphological, and geographical evidence, we investigate the species-level taxonomy and evolutionary history of the Pseudomyrmex elongatulus group, a clade of ants distributed from southwestern United States to Costa Rica. Through targeted enrichment of 2,524 UCE (ultraconserved element) loci we generate a phylogenomic data set and clarify the phylogenetic relationships and biogeographic history of these ants. The crown group is estimated to have originated ~8 Ma, in Mexico and/or northern Central America, and subsequently expanded into southern Central America and the southwestern Nearctic. The P. elongatulus group contains a mix of low- and high-elevation species, and there were apparently multiple transitions between these habitat types. We uncover three examples of one species—of restricted or marginal geographical distribution—being embedded phylogenetically in another species, rendering the latter paraphyletic. One of these cases involves an apparent workerless social parasite that occurs sympatrically with its parent species, with the latter serving as host. This suggests a sympatric origin of the parasite species within the distribution range of its host. Species boundaries are tested using three molecular delimitation approaches (SODA, bPTP, BPP) but these methods generate inflated species estimates (26–46 species), evidently because of a failure to distinguish population structure from species differences. In a formal taxonomic revision of the P. elongatulus group, based on almost 3,000 specimens from ~625 localities, we allow for geographic variation within species and we employ distinctness-in-sympatry criteria for testing hypotheses about species limits. Under these guidelines we recognize 13 species, of which nine are new: P. arcanus, sp. nov. (western Mexico); P. capillatus, sp. nov. (western Mexico); P. cognatus, sp. nov. (Chiapas, Mexico to Nicaragua); P. comitator, sp. nov. (Chiapas, Mexico); P. ereptor, sp. nov. (Veracruz, Mexico); P. exoratus, sp. nov. (southeastern Mexico, Honduras); P. fasciatus, sp. nov. (Chiapas, Mexico to Costa Rica); P. nimbus, sp. nov. (Costa Rica); and P. veracruzensis, sp. nov. (Veracruz, Mexico). Our study highlights the value of combining phylogenomic, phenotypic, and geographical data to resolve taxonomic and evolutionary questions. 
    more » « less
  2. The systematics of humble-in-appearance brown spiders (“marronoids”), within a larger group of spiders with a modified retrolateral tibial apophysis (the RTA Clade), has long vexed arachnologists. Although not yet fully settled, recent phylogenomics has allowed the delimitation and phylogenetic relationships of families within marronoids to come into focus. Understanding relationships within these families still awaits more comprehensive generic-level sampling, as the majority of described marronoid genera remain unsampled for phylogenomic data. Here we conduct such an analysis in the family Cybaeidae Banks, 1892. We greatly increase generic-level sampling, assembling ultraconserved element (UCE) data for 18 of 22 described cybaeid genera, including all North American genera, and rigorously test family monophyly using a comprehensive outgroup taxon sample. We also conduct analyses of traditional Sanger loci, allowing curation of some previously published data. Our UCE phylogenomic results support the monophyly of recognized cybaeids, with strongly supported internal relationships, and evidence for five primary molecular subclades. We hypothesize potential morphological synapomorphies for most of these subclades, bringing a robust phylogenomic underpinning to cybaeid classification. A new cybaeid genusSiskiyugen. nov.and speciesSiskiyu armillasp. nov.is discovered and described from far northern California and adjacent southern Oregon and a new species in the elusive genusCybaeozyga,C. furtivasp. nov., is described from far northern California. 
    more » « less
  3. Abstract We investigate the species-level taxonomy and evolutionary history of Nearctic ants in the Crematogaster scutellaris group (Hymenoptera: Formicidae), drawing on evidence from morphology and UCE (ultraconserved element) phylogenomics. The New World species in this group form a well-supported clade that originated in the Late Miocene (~7.3 Mya) and subsequently diverged into three major lineages: the C. coarctata clade (south-western Nearctic), the C. opaca clade (south-western Nearctic and northern Neotropics) and the C. lineolata clade (eastern Nearctic and Caribbean, with four isolated south-west endemics). We hypothesize trans-Beringian dispersal into the New World, west-to-east movement within North America and restriction of mesophilic species to the east with increasing aridification of the west. The ancestral nesting behaviour of these ants is inferred to be ground-dwelling, and this is still the predominant condition in the arid west, whereas most species in the eastern United States are arboreal. We resurrect from synonymy nine species and describe three new species: C. detecta sp. nov. (from Nevada), C. parapilosa sp. nov. (Florida) and C. vetusta sp. nov. (Arizona). We provide a worker-based key to the 34 species of Crematogaster occurring in America north of Mexico, but emphasize that there are still ongoing taxonomic issues that need to be resolved. 
    more » « less
  4. Onychophora are cryptic, soil-dwelling invertebrates known for their biogeographic affinities, diversity of reproductive modes, close phylogenetic relationship to arthropods, and peculiar prey capture mechanism. The 216 valid species of Onychophora are grouped into two families – Peripatopsidae and Peripatidae – and apart from a few relationships among major lineages within these two families, a stable phylogenetic backbone for the phylum has yet to be resolved. This has hindered our understanding of onychophoran biogeographic patterns, evolutionary history, and systematics. Neopatida, the Neotropical clade of peripatids, has proved particularly difficult, with recalcitrant nodes and low resolution, potentially due to rapid radiation of the group during the Cretaceous. Previous studies have had to compromise between number of loci and number of taxa due to limitations of Sanger sequencing and phylotranscriptomics, respectively. Additionally, aspects of their genome size and structure have made molecular phylogenetics difficult and data matrices have been affected by missing data. To address these issues, we leveraged recent, published transcriptomes and the first high quality genome for the phylum and designed a high affinity ultraconserved element (UCE) probe set for Onychophora. This new probe set, consisting of ~ 20,000 probes that target 1,465 loci across both families, has high locus recovery and phylogenetic utility. Phylogenetic analyses recovered the monophyly of major clades of Onychophora and revealed a novel lineage from the Neotropics that challenges our current understanding of onychophoran biogeographic endemicity. This new resource could drastically increase the power of molecular datasets and potentially allow access to genomic scale data from archival museum specimens to further tackle the issues exasperating onychophoran systematics. 
    more » « less
  5. Systematic relationships within the Cirrhitoidei, a suborder of five closely related families, have been uncertain for over a century. This is particularly true in reference to the families Cheilodactylidae and Latridae, which have been revised numerous times over the past several decades. Species that have been included in these two families are found in temperate regions around the world, which has led to regionally-focused studies that have only exacerbated taxonomic confusion. Here we examine systematic relationships within the Cheilodactylidae and the Latridae using ultraconserved genomic elements with near complete taxonomic sampling, and place our results in the context of the Cirrhitoidei. Our results agree with previous findings suggesting that Cheilodactylidae is restricted to two South African species, with the type species of the family, Cheilodactylus fasciatus Lacépède, forming a clade with C. pixi Smith that together is more closely related to the Chironemidae than to other species historically associated with the genus. We also strongly resolve the relationships of species within the Latridae. As a result of our analyses we revise the taxonomy of Latridae, name a new genus, and re-elevate Chirodactylus and Morwong. 
    more » « less