skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: New O Partial Photoionization Cross Sections Resolve Ionospheric EUV Remote Sensing Issues
Abstract The ionospheric O+number density can be measured remotely during the day by observing its optically thick 83.4 nm radiance. Some ambiguity is present in the process of retrieving the density due to uncertainties in the initial excitation rate. This can be removed by observing a companion optically thin emission at 61.7 nm originating from the O+(3s2P) state, providing that the ratio of the initial excitation rates is known. Analyses of ICON EUV data using an 83.4/61.7 emission ratio of order 10 result in O+densities lower by ∼2 than other measurements. Key to relating the two emissions is accurate knowledge of the partial photoionization cross sections and the spectroscopy of O+—the topic of this paper. Up to now, no independent evaluation of the ratio of the 83.4/61.6 emission ratio exists. The recent availability of state‐of‐the‐art calculations of O partial photoionization cross sections into a variety of O+states presents an opportunity to evaluate the O+(2p44P)/O+(3s2P) ionization rate ratio. We calculate excitation of these parent states of the emissions including both direct and cascade excitation from higher lying O+energy states. The resulting theoretical prediction gives ratios that range from 13.5 to 12 from solar minimum to maximum, larger than the value of 10 used by the ICON 83.4 and 61.7 nm algorithm. The higher theoretical values for the ratio reconcile the ∼2 discrepancy between simultaneous ICON and other electron density measurements.  more » « less
Award ID(s):
1849014
PAR ID:
10471194
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
128
Issue:
10
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We have analyzed medium‐resolution (full width at half maximum, FWHM = 1.2 nm), Middle UltraViolet (MUV; 180–280 nm) laboratory emission spectra of carbon monoxide (CO) excited by electron impact at 15, 20, 40, 50, and 100 eV under single‐scattering conditions at 300 K. The MUV emission spectra at 100 eV contain the Cameron Bands (CB) CO(a3Π → X1Σ+), the fourth positive group (4PG) CO(A1Π → X1Σ+), and the first negative group (1NG) CO+(B2Σ+→ X2Σ) from direct excitation and cascading‐induced emission of an optically thin CO gas. We have determined vibrational intensities and emission cross sections for these systems, important for modeling UV observations of the atmospheres of Mars and Venus. We have also measured the CB “glow” profile about the electron beam of the long‐lived CO (a3Π) state and determined its average metastable lifetime of 3 ± 1 ms. Optically allowed cascading from a host of triplet states has been found to be the dominant excitation process contributing to the CB emission cross section at 15 eV, most strongly by the d3Δ and a'3Σ+electronic states. We normalized the CB emission cross section at 15 eV electron impact energy by multilinear regression (MLR) analysis to the blended 15 eV MUV spectrum over the spectral range of 180–280 nm, based on the 4PG emission cross section at 15 eV that we have previously measured (Ajello et al., 2019,https://doi.org/10.1029/2018ja026308). We find the CB total emission cross section at 15 eV to be 7.7 × 10−17 cm2
    more » « less
  2. Abstract Prior investigations have attempted to characterize the longitudinal variability of the column number density ratio of atomic oxygen to molecular nitrogen (O/N2) in the context of non‐migrating tides. The retrieval of thermosphericO/N2from far ultra‐violet (FUV) emissions assumes production is due to photoelectron impact excitation on O and N2. Consequently, efforts to characterize the tidal variability inO/N2have been limited by ionospheric contamination from O+ + e radiative recombination at afternoon local times (LT) around the equatorial ionization anomaly. The retrieval ofO/N2from FUV observations by the Ionospheric Connection Explorer (ICON) provides an opportunity to address this limitation. In this work, we derive modifiedO/N2datasets to delineate the response of thermospheric composition to non‐migrating tides as a function of LT in the absence of ionospheric contamination. We assess estimates of the ionospheric contribution to 135.6 nm emission intensities based on either Global Ionospheric Specification (GIS) electron density, International Reference Ionosphere (IRI) model output, or observations from the Extreme Ultra‐Violet imager (EUV) onboard ICON during March and September equinox conditions in 2020. Our approach accounts for any biases between the ionospheric and airglow datasets. We found that the ICON‐FUV data set, corrected for ionospheric contamination based on GIS, uncovered a previously obscured diurnal eastward wavenumber 2 tide in a longitudinal wavenumber 3 pattern at March equinox in 2020. This finding demonstrates not only the necessity of correcting for ionospheric contamination of the FUV signals but also the utility of using GIS for the correction. 
    more » « less
  3. null (Ed.)
    Partial and total photoionization cross sections of iron-peak elements are important for the determination of abundances in late-type stars and nebular objects. We have investigated photoionization of neutral chromium from the ground and excited states in the low energy region from the first ionization threshold at 6.77 eV to 30 eV. Accurate descriptions of the initial bound states of Cr I and the final residual Cr II ionic states have been obtained in the multiconfiguration Hartree-Fock method together with adjustable configuration expansions and term-dependent non-orthogonal orbitals. The B-spline R-matrix method has been used for the calculation of photoionization cross sections. The 194 LS final ionic states of Cr II 3d44s, 3d34s2, 3d5, 3d44p, and 3d34s4p principal configurations have been included in the close-coupling expansion. The inclusion of all terms of these configurations has significant impact on the near-threshold resonance structures as well as on the nonresonant background cross sections. Total photoionization cross sections from the ground 3d54sa7S and excited 3d54sa5S, 3d44s2a5D, 3d54pz5P, and 3d44s4py5P states of Cr I have been compared with other available R-matrix calculation to estimate the likely uncertainties in photoionization cross sections. We analyzed the partial photoionization cross sections for leaving the residual ion in various states to identify the important scattering channels, and noted that 3d electron ionization channel becomes dominant at higher energies. 
    more » « less
  4. Abstract We have observed electron impact fluorescence from CO2to excite the Cameron bands (CBs), CO (a3Π →X1Σ+; 180–280 nm), the first-negative group (1NG) bands, CO+(B2Σ+→X2Σ+; 180–320 nm), the fourth-positive group (4PG) bands, CO (A1Π →X1Σ+; 111–280 nm), and the UV doublet, CO2+( B ˜ 2 Σ u + X ˜ 2 Π g ; 288.3 and 289.6 nm) in the ultraviolet (UV). This wavelength range matches the spectral region of past and present spacecraft equipped to observe UV dayglow and aurora emissions from the thermospheres (100–300 km) of Mars and Venus. Our large vacuum system apparatus is able to measure the emission cross sections of the strongest optically forbidden UV transitions found in planetary spectra. Based on our cross-sectional measurements, previous CB emission cross-sectional errors exceed a factor of 3. The UV doublet lifetime is perturbed through B ˜ 2 Σ u + A ˜ 2 Π u spin–orbit coupling. Forward modeling codes of the Mars dayglow have not been accurate in the mid-UV due to systematic errors in these two emission cross sections. We furnish absolute emission cross sections for several band systems over electron energies 20–100 eV for CO2. We present a CB lifetime, which together with emission cross sections, furnish a set of fundamental physical constants for electron transport codes such as AURIC (Atmospheric Ultraviolet Radiance Integrated Code). AURIC and Trans-Mars are used in the analysis of UV spectra from the Martian dayglow and aurora. 
    more » « less
  5. The B-spline R-matrix method is used to investigate the photoionization of neutral iron from the ground and excited states in the energy region from the ionization thresholds to 2 Ry. The multiconfiguration Hartree-Fock method in connection with adjustable configuration expansions and term-dependent orbitals is employed for an accurate representation of the initial states of Fe I and the target wave functions of Fe II. The close-coupling expansion contains 261 LS states of Fe II and includes all levels of the 3d^6 4s, 3d^5 4s^2, 3d^7, 3d^6 4p, and 3d^5 4s4p configurations. Full inclusion of all terms from the principal configurations considerably changes both the lowenergy resonance structure and the energy dependence of the background cross sections. Partial cross sections are analyzed in detail to clarify the most important scattering channels. Comparison with other calculations is used to place uncertainty bounds on our final photoionization cross sections and to assess the likely uncertainties in the existing data sets. 
    more » « less