Abstract The lattice thermal conductivity (κph) of metals and semimetals is limited by phonon‐phonon scattering at high temperatures and by electron‐phonon scattering at low temperatures or in some systems with weak phonon‐phonon scattering. Following the demonstration of a phonon band engineering approach to achieve an unusually high κphin semiconducting cubic‐boron arsenide (c‐BAs), recent theories have predicted ultrahigh κphof the semimetal tantalum nitride in the θ‐phase (θ‐TaN) with hexagonal tungsten carbide (WC) structure due to the combination of a small electron density of states near the Fermi level and a large phonon band gap, which suppress electron‐phonon and three‐phonon scattering, respectively. Here, measurements on the thermal and electrical transport properties of polycrystalline θ‐TaN converted from the ε phase via high‐pressure synthesis are reported. The measured thermal conductivity of the θ‐TaN samples shows weak temperature dependence above 200 K and reaches up to 90 Wm−1K−1, one order of magnitude higher than values reported for polycrystalline ε‐TaN and δ‐TaN thin films. These results agree with theoretical calculations that account for phonon scattering by 100 nm‐level grains and suggest κphincrease above the 249 Wm−1K−1value predicted for single‐crystal WC when the grain size of θ‐TaN is increased above 400 nm.
more »
« less
Accelerated discovery of a large family of quaternary chalcogenides with very low lattice thermal conductivity
Abstract The development of efficient thermal energy management devices such as thermoelectrics and barrier coatings often relies on compounds having low lattice thermal conductivity (κl). Here, we present the computational discovery of a large family of 628 thermodynamically stable quaternary chalcogenides, AMM′Q3(A = alkali/alkaline earth/post-transition metals; M/M′ = transition metals, lanthanides; Q = chalcogens) using high-throughput density functional theory (DFT) calculations. We validate the presence of lowκlin these materials by calculatingκlof several predicted stable compounds using the Peierls–Boltzmann transport equation. Our analysis reveals that the lowκloriginates from the presence of either a strong lattice anharmonicity that enhances the phonon-scatterings or rattler cations that lead to multiple scattering channels in their crystal structures. Our thermoelectric calculations indicate that some of the predicted semiconductors may possess high energy conversion efficiency with their figure-of-merits exceeding 1 near 600 K. Our predictions suggest experimental research opportunities in the synthesis and characterization of these stable, lowκlcompounds.
more »
« less
- Award ID(s):
- 2003476
- PAR ID:
- 10471218
- Publisher / Repository:
- npj Computational Materials
- Date Published:
- Journal Name:
- npj Computational Materials
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2057-3960
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Thermal and electronic transport properties of A Cr X 2 superionic conductors (A=Cu, Ag and X=S, Se)Abstract Superionic conductors, includingACrX2(A=Ag, Cu; X = S, Se) compounds, have attracted attention due to their low lattice thermal conductivity and high ionic conductivity. These properties are driven by structural characteristics such as anharmonicity, soft bonding, and disorder, which enhance both fast ion transport and thermal resistance. In the present study, we investigate the impact of various factors (e.g.A-site disorder, microstructure, speed of sound and chemical composition) on the thermal conductivity of the compounds CuCrS2, CuCrSe2, AgCrS2and AgCrSe2. The samples were synthesized using solid state reaction, ball milling and subsequent spark plasma sintering, and thermal diffusivity, electrical resistivity, Hall coefficients and Seebeck coefficients were measured as a function of temperature. The selenides were found to behave as degenerate semiconductors, with reasonable thermoelectric figure of merit (up to 0.79 in CuCrSe2), while the sulfides behaved as non-degenerate semiconductors with high electrical resistivity. At room temperature, all samples are in the ordered phase and show low lattice thermal conductivity ranging from 0.60 W m−1-K in AgCrSe2to 1.1 W m−1-K in CuCrSe2. Little reduction in lattice thermal conductivity was observed in the high-temperature phase, despite the increased disorder on the cation site and the onset of superionic conductivity. This suggests that the low lattice thermal conductivity inACrX2compounds is an inherent property of the crystal structure, caused by anharmonic bonding and diffuson dominated transport.more » « less
-
The Mg 3 Sb 2− x Bi x family has emerged as the potential candidates for thermoelectric applications due to their ultra-low lattice thermal conductivity ( κ L ) at room temperature (RT) and structural complexity. Here, using ab initio calculations of the electron-phonon averaged (EPA) approximation coupled with Boltzmann transport equation (BTE), we have studied electronic, phonon and thermoelectric properties of Mg 3 Sb 2− x Bi x (x = 0, 1, and 2) monolayers. In violation of common mass-trend expectations, increasing Bi element content with heavier Zintl phase compounds yields an abnormal change in κ L in two-dimensional Mg 3 Sb 2− x Bi x crystals at RT (∼0.51, 1.86, and 0.25 W/mK for Mg 3 Sb 2 , Mg 3 SbBi, and Mg 3 Bi 2 ). The κ L trend was detailedly analyzed via the phonon heat capacity, group velocity and lifetime parameters. Based on quantitative electronic band structures, the electronic bonding through the crystal orbital Hamilton population (COHP) and electron local function analysis we reveal the underlying mechanism for the semiconductor-semimetallic transition of Mg 3 Sb 2-− x Bi x compounds, and these electronic transport properties (Seebeck coefficient, electrical conductivity, and electronic thermal conductivity) were calculated. We demonstrate that the highest dimensionless figure of merit ZT of Mg 3 Sb 2− x Bi x compounds with increasing Bi content can reach ∼1.6, 0.2, and 0.6 at 700 K, respectively. Our results can indicate that replacing heavier anion element in Zintl phase Mg 3 Sb 2− x Bi x materials go beyond common expectations (a heavier atom always lead to a lower κ L from Slack’s theory), which provide a novel insight for regulating thermoelectric performance without restricting conventional heavy atomic mass approach.more » « less
-
Abstract The lattice thermal conductivity ( κ L ) of the monolayers of partial group-VA elements and binary compounds are systemically investigated by the first-principles calculations and phonon Boltzmann transport equation (PBTE), including aW-antimonene, α -arsenene, black phosphorus, α -SbAs, α -SbP and α -AsP. The κ L values decrease with the increasing of atomic mass for these materials with similar geometry and valence structures. It is ascribed to phonon branches softening, low phonon group velocity, and large Grüneisen parameters. Due to the neutralization of phonon group velocity and phonon lifetime, κ L of binary compounds is between their corresponding elements. As the atomic radius and mass increase, the bond strength and the phonon group velocity decreases. Furthermore, the dimensionless parameter γ 2 / A , which comes from the Slack equation and only has the dependence of Grüneisen parameter, grows up with the atomic mass rising, which indicates that a larger anharmonicity is present in the heavier V-V monolayers. For SbAs and SbP compounds, the thermal conductivity anisotropy mainly results from the anisotropy of elastic coefficients along armchair and zigzag directions. Our results highlight the impact of atomic arrangement on the thermal conductivity of group VA binary compounds. This work paves a way to modulate the thermal conductivity of 2D VA elements by incorporation atoms with suitable mass and may guide to improve thermoelectrical performance via the alloying method.more » « less
-
Entropy stabilized oxide of MgNiCoCuZnO5, also known as J14, is a material of active research interest due to a high degree of lattice distortion and tunability. Lattice distortion in J14 plays a crucial role in understanding the elastic constants and lattice thermal conductivity within the single-phase crystal. In this work, a neuroevolution machine learning potential (NEP) is developed for J14, and its accuracy has been compared to density functional theory calculations. The training errors for energy, force, and virial are 5.60 meV/atom, 97.90 meV/Å, and 45.67 meV/atom, respectively. Employing NEP potential, lattice distortion, and elastic constants is studied up to 900 K. In agreement with experimental findings, this study shows that the average lattice distortion of oxygen atoms is relatively higher than that of all transition metals in entropy-stabilized oxide. The observed distortion saturation in the J14 arises from the competing effects of minimum site distortion, which increases with increasing temperature due to enhanced thermal vibrations, and maximum site distortion, which decreases with increasing temperature. Furthermore, a series of molecular dynamics simulations up to 900 K are performed to study the stress–strain behavior. The elastic constants, bulk modulus, and ultimate tensile strength obtained from these simulations indicate a linear decrease in these properties with temperature, as J14 becomes softer owing to thermal effects. Finally, to gain some insight into thermal transport in these materials, with the so-developed NEP potential, and using non-equilibrium molecular dynamics simulations, we study the lattice thermal conductivity (κ) of the ternary compound MgNiO2 as a function of temperature. It is found that κ decreases from 4.25 W m−1 K−1 at room temperature to 3.5 W m−1 K−1 at 900 K. This suppression is attributed to the stronger scattering of low-frequency modes at higher temperatures.more » « less
An official website of the United States government

