skip to main content


Title: Bit Complexity of Jordan Normal Form and Polynomial Spectral Factorization
We study the bit complexity of two related fundamental computational problems in linear algebra and control theory. Our results are: (1) An Õ(n^{ω+3}a+n⁴a²+n^ωlog(1/ε)) time algorithm for finding an ε-approximation to the Jordan Normal form of an integer matrix with a-bit entries, where ω is the exponent of matrix multiplication. (2) An Õ(n⁶d⁶a+n⁴d⁴a²+n³d³log(1/ε)) time algorithm for ε-approximately computing the spectral factorization P(x) = Q^*(x)Q(x) of a given monic n× n rational matrix polynomial of degree 2d with rational a-bit coefficients having a-bit common denominators, which satisfies P(x)⪰0 for all real x. The first algorithm is used as a subroutine in the second one. Despite its being of central importance, polynomial complexity bounds were not previously known for spectral factorization, and for Jordan form the best previous best running time was an unspecified polynomial in n of degree at least twelve [Cai, 1994]. Our algorithms are simple and judiciously combine techniques from numerical and symbolic computation, yielding significant advantages over either approach by itself.  more » « less
Award ID(s):
2009011
PAR ID:
10471250
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Schloss Dagstuhl -- Leibniz-Zentrum fur Informatik
Date Published:
Journal Name:
14th Innovations in Theoretical Computer Science Conference (ITCS 2023)
ISSN:
1868-8969
ISBN:
978-3-95977-263-1
Format(s):
Medium: X
Location:
Cambridge, MA
Sponsoring Org:
National Science Foundation
More Like this
  1. We give new quantum algorithms for evaluating composed functions whose inputs may be shared between bottom-level gates. Let f be an m -bit Boolean function and consider an n -bit function F obtained by applying f to conjunctions of possibly overlapping subsets of n variables. If f has quantum query complexity Q ( f ) , we give an algorithm for evaluating F using O ~ ( Q ( f ) ⋅ n ) quantum queries. This improves on the bound of O ( Q ( f ) ⋅ n ) that follows by treating each conjunction independently, and our bound is tight for worst-case choices of f . Using completely different techniques, we prove a similar tight composition theorem for the approximate degree of f .By recursively applying our composition theorems, we obtain a nearly optimal O ~ ( n 1 − 2 − d ) upper bound on the quantum query complexity and approximate degree of linear-size depth- d AC 0 circuits. As a consequence, such circuits can be PAC learned in subexponential time, even in the challenging agnostic setting. Prior to our work, a subexponential-time algorithm was not known even for linear-size depth-3 AC 0 circuits.As an additional consequence, we show that AC 0 ∘ ⊕ circuits of depth d + 1 require size Ω ~ ( n 1 / ( 1 − 2 − d ) ) ≥ ω ( n 1 + 2 − d ) to compute the Inner Product function even on average. The previous best size lower bound was Ω ( n 1 + 4 − ( d + 1 ) ) and only held in the worst case (Cheraghchi et al., JCSS 2018). 
    more » « less
  2. Bringmann, Karl ; Grohe, Martin ; Puppis, Gabriele ; Svensson, Ola (Ed.)
    We consider the problem of approximate counting of triangles and longer fixed length cycles in directed graphs. For triangles, Tětek [ICALP'22] gave an algorithm that returns a (1±ε)-approximation in Õ(n^ω/t^{ω-2}) time, where t is the unknown number of triangles in the given n node graph and ω < 2.372 is the matrix multiplication exponent. We obtain an improved algorithm whose running time is, within polylogarithmic factors the same as that for multiplying an n× n/t matrix by an n/t × n matrix. We then extend our framework to obtain the first nontrivial (1± ε)-approximation algorithms for the number of h-cycles in a graph, for any constant h ≥ 3. Our running time is Õ(MM(n,n/t^{1/(h-2)},n)), the time to multiply n × n/(t^{1/(h-2)}) by n/(t^{1/(h-2)) × n matrices. Finally, we show that under popular fine-grained hypotheses, this running time is optimal. 
    more » « less
  3. Kumar, Amit ; Ron-Zewi, Noga (Ed.)
    Estimating the size of the union of a stream of sets S₁, S₂, …, S_M where each set is a subset of a known universe Ω is a fundamental problem in data streaming. This problem naturally generalizes the well-studied 𝖥₀ estimation problem in the streaming literature, where each set contains a single element from the universe. We consider the general case when the sets S_i can be succinctly represented and allow efficient membership, cardinality, and sampling queries (called a Delphic family of sets). A notable example in this framework is the Klee’s Measure Problem (KMP), where every set S_i is an axis-parallel rectangle in d-dimensional spaces (Ω = [Δ]^d where [Δ] := {1, … ,Δ} and Δ ∈ ℕ). Recently, Meel, Chakraborty, and Vinodchandran (PODS-21, PODS-22) designed a streaming algorithm for (ε,δ)-estimation of the size of the union of set streams over Delphic family with space and update time complexity O((log³|Ω|)/ε² ⋅ log 1/δ) and Õ((log⁴|Ω|)/ε² ⋅ log 1/(δ)), respectively. This work presents a new, sampling-based algorithm for estimating the size of the union of Delphic sets that has space and update time complexity Õ((log²|Ω|)/ε² ⋅ log 1/(δ)). This improves the space complexity bound by a log|Ω| factor and update time complexity bound by a log² |Ω| factor. A critical question is whether quadratic dependence of log|Ω| on space and update time complexities is necessary. Specifically, can we design a streaming algorithm for estimating the size of the union of sets over Delphic family with space and complexity linear in log|Ω| and update time poly(log|Ω|)? While this appears technically challenging, we show that establishing a lower bound of ω(log|Ω|) with poly(log|Ω|) update time is beyond the reach of current techniques. Specifically, we show that under certain hard-to-prove computational complexity hypothesis, there is a streaming algorithm for the problem with optimal space complexity O(log|Ω|) and update time poly(log(|Ω|)). Thus, establishing a space lower bound of ω(log|Ω|) will lead to break-through complexity class separation results. 
    more » « less
  4. QR factorization is a key tool in mathematics, computer science, operations research, and engineering. This paper presents the roundoff-error-free (REF) QR factorization framework comprising integer-preserving versions of the standard and the thin QR factorizations and associated algorithms to compute them. Specifically, the standard REF QR factorization factors a given matrix $A \in \Z^{m \times n}$ as $A=QDR$, where $Q \in \Z^{m \times m}$ has pairwise orthogonal columns, $D$ is a diagonal matrix, and $R \in \Z^{m \times n}$ is an upper trapezoidal matrix; notably, the entries of $Q$ and $R$ are integral, while the entries of $D$ are reciprocals of integers. In the thin REF QR factorization, $Q \in \Z^{m \times n}$ also has pairwise orthogonal columns, and $R \in \Z^{n \times n}$ is also an upper triangular matrix. In contrast to traditional (i.e., floating-point) QR factorizations, every operation used to compute these factors is integral; thus, REF QR is guaranteed to be an exact orthogonal decomposition. Importantly, the bit-length of every entry in the REF QR factorizations (and within the algorithms to compute them) is bounded polynomially. Notable applications of our REF QR factorizations include finding exact least squares or exact basic solutions (i.e., a rational n-dimensional vector $x$) to any given full column rank or rank deficient linear system $A x = b$, respectively. In addition, our exact factorizations can be used as a subroutine within exact and/or high-precision quadratic programming. Altogether, REF QR provides a framework to obtain exact orthogonal factorizations of any rational matrix (as any rational/decimal matrix can be easily transformed into an integral matrix). 
    more » « less
  5. Estimating the volume of a convex body is a central problem in convex geometry and can be viewed as a continuous version of counting. We present a quantum algorithm that estimates the volume of ann-dimensional convex body within multiplicative error ε usingÕ(n3+ n2.5) queries to a membership oracle andÕ(n5+n4.5/ε)additional arithmetic operations. For comparison, the best known classical algorithm usesÕ(n3.5+n32)queries andÕ(n5.5+n52)additional arithmetic operations. To the best of our knowledge, this is the first quantum speedup for volume estimation. Our algorithm is based on a refined framework for speeding up simulated annealing algorithms that might be of independent interest. This framework applies in the setting of “Chebyshev cooling,” where the solution is expressed as a telescoping product of ratios, each having bounded variance. We develop several novel techniques when implementing our framework, including a theory of continuous-space quantum walks with rigorous bounds on discretization error. To complement our quantum algorithms, we also prove that volume estimation requiresΩ (√ n+1/ε)quantum membership queries, which rules out the possibility of exponential quantum speedup innand shows optimality of our algorithm in 1/ε up to poly-logarithmic factors.

     
    more » « less