skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Trust in the Context of Blockchain Applications
Measuring trust in different Blockchain application contexts is challenging. There is a gap between building an accountable system with Blockchain and measuring the actual trust enhancement. This paper reviews trust factors in different Blockchain application contexts. We propose a trust assessment model for accountable trust factor collection while accounting for both quantitative and qualitative aspects of trust assessment. Our goal is to help users determine the trustworthiness of an entity by analyzing trust factors collected from intermediaries during business transactions. We use security and incentive assumptions to enhance the reliability of trust assessment data on Blockchain.  more » « less
Award ID(s):
2131515
PAR ID:
10471337
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-9958-3
Page Range / eLocation ID:
111 to 118
Format(s):
Medium: X
Location:
San Antonio, TX, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. As a foundational and disruptive technology with unique features, blockchains can provide distinct technology pushes for novel business models, strategies, processes, and applications. Revised or new business models can be iteratively refined and transformed to increasingly more detailed design and implementation models to be realized by applications supported by blockchains. Governance concerns with how decisions are made, implemented, and controlled. It is an important focal point of any model and process. Blockchain enables new governance opportunities that are trusted, decentralized, automated, accountable, secured, and privacy-protected. These opportunities can be used to analyze governance issues in constructing models, processes, and blockchain applications. Based on our prototyping experience in two permissioned blockchain platforms, we propose a framework of six governance attributes for constructing consortium blockchain applications: decision process, accountability and verifiability, trust, incentive, security and privacy, and effectiveness. The framework aids in exploring blockchain-created governance opportunities and driving future research. 
    more » « less
  2. As Blockchain technology become more understood in recent years and its capability to solve enterprise business use cases become evident, technologist have been exploring Blockchain technology to solve use cases that have been daunting industries for years. Unlike existing technologies, one of the key features of blockchain technology is its unparalleled capability to provide, traceability, accountability and immutable records that can be accessed at any point in time. One application area of interest for blockchain is securing heterogenous networks. This paper explores the security challenges in a heterogonous network of IoT devices and whether blockchain can be a viable solution. Using an experimental approach, we explore the possibility of using blockchain technology to secure IoT devices, validate IoT device transactions, and establish a chain of trust to secure an IoT device mesh network, as well as investigate the plausibility of using immutable transactions for forensic analysis. 
    more » « less
  3. Nowadays an emerging class of applications are based oncollaboration over a shared database among different entities. However, the existing solutions on shared database may require trust on others, have high hardware demand that is unaffordable for individual users, or have relatively low performance. In other words, there is a trilemma among security, compatibility and efficiency. In this paper, we present FalconDB, which enables different parties with limited hardware resources to efficiently and securely collaborate on a database. FalconDB adopts database servers with verification interfaces accessible to clients and stores the digests for query/update authentications on a blockchain. Using blockchain as a consensus platform and a distributed ledger, FalconDB is able to work without any trust on each other. Meanwhile, FalconDB requires only minimal storage cost on each client, and provides anywhere-available, real-time and concurrent access to the database. As a result, FalconDB over-comes the disadvantages of previous solutions, and enables individual users to participate in the collaboration with high efficiency, low storage cost and blockchain-level security guarantees. 
    more » « less
  4. Blockchain technology is the cornerstone of digital trust and systems’ decentralization. The necessity of eliminating trust in computing systems has triggered researchers to investigate the applicability of Blockchain to decentralize the conventional security models. Specifically, researchers continuously aim at minimizing trust in the well-known Public Key Infrastructure (PKI) model which currently requires a trusted Certificate Authority (CA) to sign digital certificates. Recently, the Automated Certificate Management Environment (ACME) was standardized as a certificate issuance automation protocol. It minimizes the human interaction by enabling certificates to be automatically requested, verified, and installed on servers. ACME only solved the automation issue, but the trust concerns remain as a trusted CA is required. In this paper we propose decentralizing the ACME protocol by using the Blockchain technology to enhance the current trust issues of the existing PKI model and to eliminate the need for a trusted CA. The system was implemented and tested on Ethereum Blockchain, and the results showed that the system is feasible in terms of cost, speed, and applicability on a wide range of devices including Internet of Things (IoT) devices. 
    more » « less
  5. In recent years, we have witnessed a rise in the popularity of net- worked hospitality services (NHSs), an online marketplace for short-term peer- to-peer accommodations. Such systems, however, raise significant privacy con- cerns, because service providers such as Airbnb and 9flats can easily collect the precise and personal information of millions of participating hosts and guests through their centralized online platforms. In this paper, we propose PrivateNH, a privacy-enhancing and practical solution that offers anonymity and accountabil- ity for NHS users without relying on any trusted third party. PrivateNH leverages the recent progress of Bitcoin techniques such as Colored Coins and CoinShuffle to generate and maintain anonymous credentials for NHS participants. The cre- dential holders (NHS hosts or guests) can then lease or rent short-term lodging and interact with the service provider in an anonymous and accountable man- ner. An anonymous and secure reputation system is also introduced to establish the trust between unfamiliar hosts and guests in a peer-to-peer fashion. The pro- posed scheme is compatible with the current Bitcoin blockchain system, and its effectiveness and feasibility in NHS scenario are also demonstrated by security analysis and performance evaluation. 
    more » « less