skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Measurement-Derived Functional Model for the Interaction Between Congestion Control and QoE in Video Conferencing
Video Conferencing Applications (VCAs) that support remote work and education have increased in use over the last two years, contributing to Internet bandwidth usage. VCA clients transmit video and audio to each other in peer-to-peer mode or through a bridge known as a Selective Forwarding Unit (SFU). Popular VCAs implement congestion control in the application layer over UDP and accomplish rate adjustment through video rate control, ultimately affecting end user Quality of Experience(QoE). Researchers have reported on the throughput and video metric performance of specific VCAs using structuredexperiments. Yet prior work rarely examines the interaction between congestion control mechanisms and rate adjustment techniques that produces the observed throughput and QoE metrics. Understanding this interaction at a functional level paves the way to explain observed performance, to pinpoint commonalities and key functional differences across VCAs, and to contemplate opportunities for innovation. To that end, we first design and conduct detailed measurements of three VCAs(WebRTC/Jitsi, Zoom, Blue Jeans) to develop understanding of their congestion and video rate control mechanisms. We then use the measurement results to derive our functional models for the VCA client and SFU. Our models reveal the complexity of these systems and demonstrate how, despite some uniformity in function deployment, there is significant variability among the VCAs in the implementation of these functions.  more » « less
Award ID(s):
1909040
PAR ID:
10577252
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
ISSN:
0302-9743
ISBN:
978-3-031-28485-4
Format(s):
Medium: X
Location:
Virtual
Sponsoring Org:
National Science Foundation
More Like this
  1. Low-latency is a critical user Quality-of-Experience (QoE) metric for live video streaming. It poses significant challenges for streaming over the Internet. In this paper, we explore the design space of low-latency live video streaming by developing dynamic models and optimal control strategies. We further develop practical live video streaming algorithms within the Model Predictive Control (MPC) framework, namely MPC-Live, to maximize user QoE by adapting the video bitrate while maintaining low end-to-end video latency in dynamic network environment. Through extensive experiments driven by real network traces, we demonstrate that our live video streaming algorithms can improve the performance dramatically within latency range of two to five seconds. 
    more » « less
  2. Asakura, Atsushi (Ed.)
    Vascularized composite allografts (VCAs) refer to en bloc heterogenous tissue that is transplanted to restore form and function after amputation or tissue loss. Rat limb VCA has emerged as a robust translational model to study the pathophysiology of these transplants. However, these models have predominately focused on hindlimb VCAs which does not translate anatomically to upper extremity transplantation, whereas the majority of clinical VCAs are upper extremity and hand transplants. This work details our optimization of rat forelimb VCA procurement and sub-normothermic machine perfusion (SNMP) protocols, with results in comparison to hindlimb perfusion with the same perfusion modality. Results indicate that compared to hindlimbs, rat forelimbs on machine perfusion mandate lower flow rates and higher acceptable maximum pressures. Additionally, low-flow forelimbs have less cellular damage than high-flow forelimbs based on oxygen uptake, edema, potassium levels, and histology through 2 hours of machine perfusion. These results are expected to inform future upper extremity VCA preservation studies. 
    more » « less
  3. Video conferencing apps (VCAs) make it possible for previously private spaces -- bedrooms, living rooms, and kitchens -- into semi-public extensions of the office. For the most part, users have accepted these apps in their personal space without much thought about the permission models that govern the use of their private data during meetings. While access to a device's video camera is carefully controlled, little has been done to ensure the same level of privacy for accessing the microphone. In this work, we ask the question: what happens to the microphone data when a user clicks the mute button in a VCA? We first conduct a user study to analyze users' understanding of the permission model of the mute button. Then, using runtime binary analysis tools, we trace raw audio flow in many popular VCAs as it traverses the app from the audio driver to the network. We find fragmented policies for dealing with microphone data among VCAs -- some continuously monitor the microphone input during mute, and others do so periodically. One app transmits statistics of the audio to its telemetry servers while the app is muted. Using network traffic that we intercept en route to the telemetry server, we implement a proof-of-concept background activity classifier and demonstrate the feasibility of inferring the ongoing background activity during a meeting -- cooking, cleaning, typing, etc. We achieved 81.9% macro accuracy on identifying six common background activities using intercepted outgoing telemetry packets when a user is muted. 
    more » « less
  4. null (Ed.)
    Understanding end-user video Quality of Experience (QoE) is important for Internet Service Providers (ISPs). Existing work presents mechanisms that use network measurement data to estimate video QoE. Most of these mechanisms assume access to packet-level traces, the most-detailed data available from the network. However, collecting packet-level traces can be challenging at a network-wide scale. Therefore, we ask: "Is it feasible to estimate video QoE with lightweight, readily-available, but coarse-grained network data?" We specifically consider data in the form of Transport Layer Security (TLS) transactions that can be collected using a standard proxy and present a machine learning-based methodology to estimate QoE. Our evaluation with three popular streaming services shows that the estimation accuracy using TLS transactions is high (up to 72%) with up to 85% recall in detecting low QoE (low video quality or high re-buffering) instances. Compared to packet traces, the estimation accuracy (recall) is 7% (9%) lower but has up to 60 times lower computation overhead. 
    more » « less
  5. Abstract Ischemia is a major limiting factor in Vascularized Composite Allotransplantation (VCA) as irreversible muscular injury can occur after as early as 4-6 hours of static cold storage (SCS). Organ preservation technologies have led to the development of storage protocols extending rat liver ex vivo preservation up to 4 days. Development of such a protocol for VCAs has the added challenge of inherent ice nucleating factors of the graft, therefore this study focused on developing a robust protocol for VCA supercooling. Rodent partial hindlimbs underwent subnormothermic machine perfusion (SNMP) with several loading solutions, followed by cryoprotective agent (CPA) cocktail developed for VCAs. Storage occurred in suspended animation for 24h and VCAs were recovered using SNMP with modified Steen. This study shows a robust VCA supercooling preservation protocol in a rodent model. Further optimization is expected to allow for its application in a transplantation model, which would be a breakthrough in the field of VCA preservation.*Irina Filz von Reiterdank & Pierre Tawa Contributed equally. 
    more » « less