skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Green, Fire‐Retarding Ether Solvent for Sustainable High‐Voltage Li‐Ion Batteries at Standard Salt Concentration
Abstract Lithium‐ion batteries (LIBs) are increasingly encouraged to enhance their environmental friendliness and safety while maintaining optimal energy density and cost‐effectiveness. Although various electrolytes using greener and safer glyme solvents have been reported, the low charge voltage (usually lower than 4.0 V vs Li/Li+) restricts the energy density of LIBs. Herein, tetraglyme, a less‐toxic, non‐volatile, and non‐flammable ether solvent, is exploited to build safer and greener LIBs. It is demonstrated that ether electrolytes, at a standard salt concentration (1 m), can be reversibly cycled to 4.5 V vs Li/Li+. Anchored with Boron‐rich cathode‐electrolyte interphase (CEI) and mitigated current collector corrosion, the LiNi0.8Mn0.1Co0.1O2(NMC811) cathode delivers competitive cyclability versus commercial carbonate electrolytes when charged to 4.5 V. Synchrotron spectroscopic and imaging analyses show that the tetraglyme electrolyte can sufficiently suppress the overcharge behavior associated with the high‐voltage electrolyte decomposition, which is advantageous over previously reported glyme electrolytes. The new electrolyte also enables minimal transition metal dissolution and deposition. NMC811||hard carbon full cell delivers excellent cycling stability at C/3 with a high average Coulombic efficiency of 99.77%. This work reports an oxidation‐resilient tetraglyme electrolyte with record‐high 4.5 V stability and enlightens further applications of glyme solvents for sustainable LIBs by designing Boron‐rich interphases.  more » « less
Award ID(s):
2045570
PAR ID:
10522790
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
14
Issue:
38
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–x–yO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites. 
    more » « less
  2. Abstract High‐voltage lithium metal batteries with nickel‐rich oxide cathodes (LiNi0.8Co0.1Mn0.1O2, NCM811) represent one of the most promising approaches to achieve high energy density up to 500 Wh kg−1. However, severe interfacial side reactions occur at both NCM811 cathode and lithium anode at ultrahigh voltages (>4.6 V). To address these issues, various electrolytes have been developed, but they still suffer from electrolyte decomposition, leading to moderate voltages and insufficient cycling. Herein, we introduce (3,3,3‐trifluoropropyl)trimethoxy silane (TTMS) as an asymmetrically fluorinated single solvent, which incorporates both strongly solvating (─OCH3) and weakly solvating (─CF3) groups. The designed 2.1 mol L−1(M) LiFSI/TTMS electrolyte achieves excellent compatibility with both NCM811 cathode and Li metal anode due to its unique anion‐dominating solvation structures and inorganic‐rich interphase formation. Consequently, it enables stable cycling in the Li||NCM811 battery at an ultrahigh voltage of 4.8 V, with 84.5% capacity retention after 300 cycles. Even under more aggressive conditions, including high temperature (60 °C) and anode‐less configuration (N/P ratio = 1.76), the Li||NCM811 battery exhibits remarkable capacity retention (>80%) over 300 cycles. This work underscores the effectiveness of electrolyte engineering for developing ultrahigh‐voltage and long‐cycling battery systems. 
    more » « less
  3. Electrolytes play a critical role in the formation of stable solid electrolyte interphase (SEI) for Si anodes. This study investigates the impacts of five different electrolytes on the specific capacity and cycle stability of Si-based anodes and confirms the advantages of the second-generation (Gen2) electrolyte over the first-generation (Gen1) electrolyte in the first 200 cycles, beyond which the advantages of Gen2 electrolyte disappear. Addition of more FEC and VC additives to Gen2 electrolyte does not offer significant advantages in the cycle stability and specific capacities. However, very high FEC electrolytes with 20 wt% FEC and 80% dimethyl carbonate exhibits strong dependance on the lithiation cutoff voltage. This electrolyte results in durable SEI layers when the lithiation cutoff voltage is at 0.01 V vs Li/Li+. Furthermore, lowering the lithiation cutoff voltage from 0.1 V to 0.01 V vs Li/Li+has raised the specific capacity of Si-based anodes, leading to higher specific capacities than those of graphite anodes at the electrode level for 380 cycles investigated in this study. The understandings developed here provide unambiguous guidelines for selection of electrolytes to achieve long cycle stability and high specific capacity of Si-based cells simultaneously in the future. 
    more » « less
  4. Abstract Achieving durable lithium (Li) metal anodes in liquid electrolytes remains challenging, primarily due to the instability of the formed solid‐electrolyte interphases (SEIs). Modulating the Li‐ion solvation structures is pivotal in forming a stable SEI for stabilizing Li metal anodes. Here a strategy is developed to fine‐tune the Li‐ion solvation structures through enhanced dipole–dipole interactions between the Li‐ion‐coordinated solvent and the non‐Li‐ion‐coordinating diluent, for creating a stable SEI in the developed binary salt electrolyte. The enhanced dipole–dipole interactions weaken the coordination between Li‐ions and the solvents while strengthening the interaction between Li‐ions and dual anions, thereby facilitating the Li‐ion transport and a robust anion‐derived SEI with a distinct bilayer structure. Consequently, the developed electrolyte exhibited exceptional electrochemical performance in high energy‐density Li||LiNi0.8Mn0.1Co0.1O2 (NMC811) cells, with long calendar life, stable cyclability at 1 C, and reliable operation between 25 and −20 °C, and it also demonstrat remarkable cycling stability for a Li||NMC811 pouch cell with projected energy density of 402 Wh kg−1, maintaining 80% capacity retention over 606 cycles under practical conditions. 
    more » « less
  5. Lithium metal batteries (LMBs), especially “anode-free“ LMBs, promise much higher energy density than current lithium-ion batteries but suffer from poor capacity retention. While novel electrolytes have been designed to extend cycle life in anode free LMBs, most of them contain a high fraction of fluorinated solvents or diluents that may cause environmental concerns. Herein, we report the design and synthesis of a group of nonfluorinated ether solvents (termed xME solvents). By substituting the methyl terminal group of 1,2-dimethoxy ethane (DME) with different alkyl groups, the solvation power of xME solvents was tuned to be weaker, leading to more ion pairing in electrolyte solvation structure. In anode free type Cu/LiFePO4(Cu/LFP) cells, xME electrolytes in general show better capacity retention than DME-based electrolyte. Some xME electrolytes also show better oxidative stability than DME against aluminum and LiNi0.8Mn0.1Co0.1O2(NMC811) electrodes. While the general improvement in LMB cycle life and oxidative stability can be attributed to more ion pairing, the local variation within xME electrolytes indicates other factors are also important. Our work proposes a molecular design strategy to fine-tune ion solvation structure of nonfluorinated ether electrolytes for LMBs. 
    more » « less