skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Second-order Stencil Descent for Interior-point Hyperelasticity
In this paper, we present a GPU algorithm for finite element hyperelastic simulation. We show that the interior-point method, known to be effective for robust collision resolution, can be coupled with non-Newton procedures and be massively sped up on the GPU. Newton's method has been widely chosen for the interior-point family, which fully solves a linear system at each step. After that, the active set associated with collision/contact constraints is updated. Mimicking this routine using a non-Newton optimization (like gradient descent or ADMM) unfortunately does not deliver expected accelerations. This is because the barrier functions employed in an interior-point method need to be updated at every iteration to strictly confine the search to the feasible region. The associated cost (e.g., per-iteration CCD) quickly overweights the benefit brought by the GPU, and a new parallelism modality is needed. Our algorithm is inspired by the domain decomposition method and designed to move interior-point-related computations to local domains as much as possible. We minimize the size of each domain (i.e., a stencil) by restricting it to a single element, so as to fully exploit the capacity of modern GPUs. The stencil-level results are integrated into a global update using a novel hybrid sweep scheme. Our algorithm is locally second-order offering better convergence. It enables simulation acceleration of up to two orders over its CPU counterpart. We demonstrate the scalability, robustness, efficiency, and quality of our algorithm in a variety of simulation scenarios with complex and detailed collision geometries.  more » « less
Award ID(s):
2153851 2153863 2023780
PAR ID:
10471681
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM TOG
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
42
Issue:
4
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a GPU algorithm for deformable simulation. Our method offers good computational efficiency and penetration-free guarantee at the same time, which are not common with existing techniques. The main idea is an algorithmic integration of projective dynamics (PD) and incremental potential contact (IPC). PD is a position-based simulation framework, favored for its robust convergence and convenient implementation. We show that PD can be employed to handle the variational optimization with the interior point method e.g., IPC. While conceptually straightforward, this requires a dedicated rework over the collision resolution and the iteration modality to avoid incorrect collision projection with improved numerical convergence. IPC exploits a barrier-based formulation, which yields an infinitely large penalty when the constraint is on the verge of being violated. This mechanism guarantees intersection-free trajectories of deformable bodies during the simulation, as long as they are apart at the rest configuration. On the downside, IPC brings a large amount of nonlinearity to the system, making PD slower to converge. To mitigate this issue, we propose a novel GPU algorithm named A-Jacobi for faster linear solve at the global step of PD. A-Jacobi is based on Jacobi iteration, but it better harvests the computation capacity on modern GPUs by lumping several Jacobi steps into a single iteration. In addition, we also re-design the CCD root finding procedure by using a new minimum-gradient Newton algorithm. Those saved time budgets allow more iterations to accommodate stiff IPC barriers so that the result is both realistic and collision-free. Putting together, our algorithm simulates complicated models of both solids and shells on the GPU at an interactive rate or even in real time. 
    more » « less
  2. Quantum linear system algorithms (QLSAs) have the potential to speed up algorithms that rely on solving linear systems. Interior point methods (IPMs) yield a fundamental family of polynomial-time algorithms for solving optimization problems. IPMs solve a Newton linear system at each iteration to compute the search direction; thus, QLSAs can potentially speed up IPMs. Due to the noise in contemporary quantum computers, quantum-assisted IPMs (QIPMs) only admit an inexact solution to the Newton linear system. Typically, an inexact search direction leads to an infeasible solution, so, to overcome this, we propose an inexact-feasible QIPM (IF-QIPM) for solving linearly constrained quadratic optimization problems. We also apply the algorithm to ℓ1-norm soft margin support vector machine (SVM) problems, and demonstrate that our algorithm enjoys a speedup in the dimension over existing approaches. This complexity bound is better than any existing classical or quantum algorithm that produces a classical solution. 
    more » « less
  3. A novel numerical method is proposed for the solution of transient multi-physics problems involving heat conduction, electrical current sharing and Joule heating. The innovation consists of a mesh-free Monte Carlo approach that eliminates or drastically reduces the particle scattering requirements typical of conventional Monte-Carlo methods. The proposed algorithm encapsulates a volume around each point that affects the solution at a given point in the domain; the volume includes other points that represent small perturbations along the path of energy transfer. The proposed method is highly parallelizable and amenable for GPU computing, and its computational performance was substantially increased by the elimination of scattered interpolation. The accuracy and simulation time of the proposed method are compared against a finite element solution and also against experimental results from existing literature. The proposed method provides accuracy comparable to that of finite element methods, achieving an order of magnitude reduction in simulation time. 
    more » « less
  4. This paper proposes an invariant-domain preserving approximation technique for nonlinear conservation systems that is high-order accurate in space and time. The algorithm mixes a high order finite element method with an invariant-domain preserving low-order method that uses the closest neighbor stencil. The construction of the flux of the low-order method is based on an idea from Abgrall et al. (2017). The mass flux of the low-order and the high-order methods are identical on each finite element cell. This allows for mass preserving and invariant-domain preserving limiting. 
    more » « less
  5. Abstract We present a method for the efficient processing of contact and collision in volumetric elastic models simulated using the Projective Dynamics paradigm. Our approach enables interactive simulation of tetrahedral meshes with more than half a million elements, provided that the model satisfies two fundamental properties: the region of the model's surface that is susceptible to collision events needs to be known in advance, and the simulation degrees of freedom associated with that surface region should be limited to a small fraction (e.g. 5%) of the total simulation nodes. In such scenarios, a partial Cholesky factorization can abstract away the behaviour of the collision‐safe subset of the face model into the Schur Complement matrix with respect to the collision‐prone region. We demonstrate how fast and accurate updates of bilateral penalty‐based collision terms can be incorporated into this representation, and solved with high efficiency on the GPU. We also demonstrate iterating a partial update of the element rotations, akin to a selective application of the local step, specifically on the smaller collision‐prone region without explicitly paying the cost associated with the rest of the simulation mesh. We demonstrate efficient and robust interactive simulation in detailed models from animation and medical applications. 
    more » « less