skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2153851

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 3, 2025
  2. We introduce PhysGaussian a new method that seamlessly integrates physically grounded Newtonian dynamics within 3D Gaussians to achieve high-quality novel motion synthesis. Employing a customized Material Point Method (MPM) our approach enriches 3D Gaussian kernels with physically meaningful kinematic deformation and mechanical stress attributes all evolved in line with continuum mechanics principles. A defining characteristic of our method is the seamless integration between physical simulation and visual rendering: both components utilize the same 3D Gaussian kernels as their discrete representations. This negates the necessity for triangle/tetrahedron meshing marching cubes cage meshes or any other geometry embedding highlighting the principle of "what you see is what you simulate (WS^2)". Our method demonstrates exceptional versatility across a wide variety of materials--including elastic entities plastic metals non-Newtonian fluids and granular materials--showcasing its strong capabilities in creating diverse visual content with novel viewpoints and movements. 
    more » « less
  3. In this paper, we present a GPU algorithm for finite element hyperelastic simulation. We show that the interior-point method, known to be effective for robust collision resolution, can be coupled with non-Newton procedures and be massively sped up on the GPU. Newton's method has been widely chosen for the interior-point family, which fully solves a linear system at each step. After that, the active set associated with collision/contact constraints is updated. Mimicking this routine using a non-Newton optimization (like gradient descent or ADMM) unfortunately does not deliver expected accelerations. This is because the barrier functions employed in an interior-point method need to be updated at every iteration to strictly confine the search to the feasible region. The associated cost (e.g., per-iteration CCD) quickly overweights the benefit brought by the GPU, and a new parallelism modality is needed. Our algorithm is inspired by the domain decomposition method and designed to move interior-point-related computations to local domains as much as possible. We minimize the size of each domain (i.e., a stencil) by restricting it to a single element, so as to fully exploit the capacity of modern GPUs. The stencil-level results are integrated into a global update using a novel hybrid sweep scheme. Our algorithm is locally second-order offering better convergence. It enables simulation acceleration of up to two orders over its CPU counterpart. We demonstrate the scalability, robustness, efficiency, and quality of our algorithm in a variety of simulation scenarios with complex and detailed collision geometries. 
    more » « less
  4. We present a robust and efficient method for simulating Lagrangian solid-fluid coupling based on a new operator splitting strategy. We use variational formulations to approximate fluid properties and solid-fluid interactions, and introduce a unified two-way coupling formulation for SPH fluids and FEM solids using interior point barrier-based frictional contact. We split the resulting optimization problem into a fluid phase and a solid-coupling phase using a novel time-splitting approach with augmentedcontact proxies, and propose efficient custom linear solvers. Our technique accounts for fluids interaction with nonlinear hyperelastic objects of different geometries and codimensions, while maintaining an algorithmically guaranteed non-penetrating criterion. Comprehensive benchmarks and experiments demonstrate the efficacy of our method. 
    more » « less
  5. In this article, we present a four-layer distributed simulation system and its adaptation to the Material Point Method (MPM). The system is built upon a performance portableC++programming model targeting major High-Performance-Computing (HPC) platforms. A key ingredient of our system is a hierarchical block-tile-cell sparse grid data structure that is distributable to an arbitrary number of Message Passing Interface (MPI) ranks. We additionally propose strategies for efficient dynamic load balance optimization to maximize the efficiency of MPI tasks. Our simulation pipeline can easily switch among backend programming models, including OpenMP and CUDA, and can be effortlessly dispatched onto supercomputers and the cloud. Finally, we construct benchmark experiments and ablation studies on supercomputers and consumer workstations in a local network to evaluate the scalability and load balancing criteria. We demonstrate massively parallel, highly scalable, and gigascale resolution MPM simulations of up to 1.01 billion particles for less than 323.25 seconds per frame with 8 OpenSSH-connected workstations. 
    more » « less
  6. This paper introduces a new weighting scheme for particle-grid transfers that generates hybrid Lagrangian/Eulerian fluid simulations with uniform particle distributions and precise volume control. At its core, our approach reformulates the construction of Power Particles [de Goes et al. 2015] by computing volume-constrained density kernels. We employ these optimized kernels as particle domains within the Generalized Interpolation Material Point method (GIMP) in order to incorporate Power Particles into the Particle-In-Cell framework, hence the name the Power Particle-In-Cell method. We address the construction of volume-constrained density kernels as a regularized optimal transportation problem and describe an iterative solver based on localized Gaussian convolutions that leads to a significant performance speedup compared to [de Goes et al. 2015]. We also present novel extensions for handling free surfaces and solid obstacles that bypass the need for cell clipping and ghost particles. We demonstrate the advantages of our transfer weights by improving hybrid schemes for fluid simulation such as the Fluid Implicit Particle (FLIP) method and the Affine Particle-In-Cell (APIC) method with volume preservation and robustness to varying particle-per-cell ratio, while retaining low numerical dissipation, conserving linear and angular momenta, and avoiding particle reseeding or post-process relaxations. 
    more » « less