Many biological microswimmers locomote by periodically beating the densely packed cilia on their cell surface in a wave-like fashion. While the swimming mechanisms of ciliated microswimmers have been extensively studied both from the analytical and the numerical point of view, optimisation of the ciliary motion of microswimmers has received limited attention, especially for non-spherical shapes. In this paper, using an envelope model for the microswimmer, we numerically optimise the ciliary motion of a ciliate with an arbitrary axisymmetric shape. Forward solutions are found using a fast boundary-integral method, and the efficiency sensitivities are derived using an adjoint-based method. Our results show that a prolate microswimmer with a $$2\,{:}\,1$$ aspect ratio shares similar optimal ciliary motion as the spherical microswimmer, yet the swimming efficiency can increase two-fold. More interestingly, the optimal ciliary motion of a concave microswimmer can be qualitatively different from that of the spherical microswimmer, and adding a constraint to the cilia length is found to improve, on average, the efficiency for such swimmers.
more »
« less
Robust acoustic trapping and perturbation of single-cell microswimmers illuminate three-dimensional swimming and ciliary coordination
We report a label-free acoustic microfluidic method to confine single, cilia-driven swimming cells in space without limiting their rotational degrees of freedom. Our platform integrates a surface acoustic wave (SAW) actuator and bulk acoustic wave (BAW) trapping array to enable multiplexed analysis with high spatial resolution and trapping forces that are strong enough to hold individual microswimmers. The hybrid BAW/SAW acoustic tweezers employ high-efficiency mode conversion to achieve submicron image resolution while compensating for parasitic system losses to immersion oil in contact with the microfluidic chip. We use the platform to quantify cilia and cell body motion for wildtype biciliate cells, investigating effects of environmental variables like temperature and viscosity on ciliary beating, synchronization, and three-dimensional helical swimming. We confirm and expand upon the existing understanding of these phenomena, for example determining that increasing viscosity promotes asynchronous beating. Motile cilia are subcellular organelles that propel microorganisms or direct fluid and particulate flow. Thus, cilia are critical to cell survival and human health. The unicellular algaChlamydomonas reinhardtiiis widely used to investigate the mechanisms underlying ciliary beating and coordination. However, freely swimming cells are difficult to image with sufficient resolution to capture cilia motion, necessitating that the cell body be held during experiments. Acoustic confinement is a compelling alternative to use of a micropipette, or to magnetic, electrical, and optical trapping that may modify the cells and affect their behavior. Beyond establishing our approach to studying microswimmers, we demonstrate a unique ability to mechanically perturb cells via rapid acoustic positioning.
more »
« less
- PAR ID:
- 10471700
- Publisher / Repository:
- National Academy of Sciences
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 25
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Controlled trapping of cells and microorganisms using substrate acoustic waves (SAWs; conventionally termed surface acoustic waves) has proven useful in numerous biological and biomedical applications owing to the label- and contact-free nature of acoustic confinement. However, excessive heating due to vibration damping and other system losses potentially compromises the biocompatibility of the SAW technique. Herein, we investigate the thermal biocompatibility of polydimethylsiloxane (PDMS)-based SAW and glass-based SAW [that supports a bulk acoustic wave (BAW) in the fluid domain] devices operating at different frequencies and applied voltages. First, we use infrared thermography to produce heat maps of regions of interest (ROI) within the aperture of the SAW transducers for PDMS- and glass-based devices. Motile Chlamydomonas reinhardtii algae cells are then used to test the trapping performance and biocompatibility of these devices. At low input power, the PDMS-based SAW system cannot generate a large enough acoustic trapping force to hold swimming C. reinhardtii cells. At high input power, the temperature of this device rises rapidly, damaging (and possibly killing) the cells. The glass-based SAW/BAW hybrid system, on the other hand, can not only trap swimming C. reinhardtii at low input power, but also exhibits better thermal biocompatibility than the PDMS-based SAW system at high input power. Thus, a glass-based SAW/BAW device creates strong acoustic trapping forces in a biocompatible environment, providing a new solution to safely trap active microswimmers for research involving motile cells and microorganisms.more » « less
-
Respiratory cilia are important components in the lung defense mechanism. The coordinated beating of cilia cleans the airways of pathogens and foreign particles. We present a large-scale validation dataset of cilia motion for characterizing ciliary function. Ciliary beat frequency (CBF) is provided as benchmark metrics. The video dataset of cilia motion phenotypes contains four categories: temperatures, drugs and ACE2 manipulation. Under each category, mouse trachea samples were treated with different stimuli and imaged with a high-speed video microscope to acquire cilia motion. In addition, we generate ground truth masks labeling ciliary area for image segmentation. This validation dataset can serve as a benchmark for the computer vision community to develop models for analyzing ciliary beat pattern. This video dataset contains 872 videos and their ground-truth masks with the ciliary area labeled. The videos were recorded at 250 frames per second for 1 second. The image size is 800x800. Each pixel is 0.07987 μm. The csv file contains the CBF values of each video.more » « less
-
Abstract The marine tintinnid ciliate Amphorides quadrilineata is a feeding-current feeder, creating flows for particle encounter, capture and rejection. Individual-level behaviors were observed using high-speed, high-magnification digital imaging. Cells beat their cilia backward to swim forward, simultaneously generating a feeding current that brings in particles. These particles are then individually captured through localized ciliary reversals. When swimming backward, cells beat their cilia forward (=ciliary reversals involving the entire ring of cilia), actively rejecting unwanted particles. Cells achieve path-averaged speeds averaging 3–4 total lengths per second. Both micro-particle image velocimetry and computational fluid dynamics were employed to characterize the cell-scale flows. Forward swimming generates a feeding current, a saddle flow vector field in front of the cell, whereas backward swimming creates an inverse saddle flow vector field behind the cell; these ciliary flows facilitate particle encounter, capture and rejection. The model-tintinnid with a full-length lorica achieves an encounter rate Q ~29% higher than that without a lorica, albeit at a ~142% increase in mechanical power and a decrease in quasi-propulsive efficiency (~0.24 vs. ~ 0.38). It is also suggested that Q can be approximated by π(W/2 + l)2U, where W, l and U represent the lorica oral diameter, ciliary length and swimming speed, respectively.more » « less
-
Discher, Dennis (Ed.)Hydrodynamic flow produced by multiciliated cells is critical for fluid circulation and cell motility. Hundreds of cilia beat with metachronal synchrony for fluid flow. Cilia-driven fluid flow produces extracellular hydrodynamic forces that cause neighboring cilia to beat in a synchronized manner. However, hydrodynamic coupling between neighboring cilia is not the sole mechanism that drives cilia synchrony. Cilia are nucleated by basal bodies (BBs) that link to each other and to the cell’s cortex via BB-associated appendages. The intracellular BB and cortical network is hypothesized to synchronize ciliary beating by transmitting cilia coordination cues. The extent of intracellular ciliary connections and the nature of these stimuli remain unclear. Moreover, how BB connections influence the dynamics of individual cilia has not been established. We show by focused ion beam scanning electron microscopy imaging that cilia are coupled both longitudinally and laterally in the ciliate Tetrahymena thermophila by the underlying BB and cortical cytoskeletal network. To visualize the behavior of individual cilia in live, immobilized Tetrahymena cells, we developed Delivered Iron Particle Ubiety Live Light (DIPULL) microscopy. Quantitative and computer analyses of ciliary dynamics reveal that BB connections control ciliary waveform and coordinate ciliary beating. Loss of BB connections reduces cilia-dependent fluid flow forces.more » « less
An official website of the United States government

