skip to main content


Title: Embracing Culturally Relevant Computational Thinking in the Preschool Classroom: Leveraging Familiar Contexts for New Learning
Abstract

Computational thinking (CT) is an important twenty-first century skill that begins developing early. Recent interest in incorporating early CT experiences in early childhood education (i.e., preschool) has increased. In fact, the early years mark an important time during which initial competencies are acquired, interest and motivation begins to form, and in which children may develop a sense of belonging in STEM fields. As a result, providing children with access to robotics and computer science experiences to support CT that are also developmentally appropriate and culturally relevant is key. This paper uses the “powerful ideas” of computer science, seven developmentally appropriate CT concepts that children can learn, as a framework and explores the experiences of two (composite) teachers who participated in and co-developed a culturally relevant robotics program and the processes they undertake to support children’s CT development and learning. This paper considers practices that support the seven key powerful ideals while leveraging existing instructional routines and contexts that are already occurring in most classrooms, such as centers, small group activities, classroom environments, and read-alouds. Of note, this paper prioritizes approaches that acknowledge, center, and feature the ethnic, cultural, and linguistic backgrounds of young children and their families. Identifying affordable and accessible practices, this paper provides educators with tangible, integrated, and authentic practices to support children’s computational thinking, STEM learning, and sense of belonging.

 
more » « less
Award ID(s):
2031394
NSF-PAR ID:
10471764
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Early Childhood Education Journal
ISSN:
1082-3301
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Through school-university partnerships that situate learning within culturally relevant educational experiences, faculty, preservice teachers, and school-based educators are able to co-construct and share scientific knowledge. This knowledge consists of pedagogical content knowledge and funds of knowledge that include both knowledge and skills developed in cultural context that have evolved historically. In early childhood education, culturally relevant Science, Technology, Engineering, Arts, and Mathematics (STEAM) learning experiences are particularly important for young children's cognitive and social emotional development. This paper describes how intentional co-planning and collaboration to celebrate the US Read across America Day provided over 100 preschool children in eight classrooms with access to STEAM lessons virtually led by university preservice teachers in partnership with educators in the school. These activities engaged children in exploring art, computer science, physical science, engineering, and mathematics within the context of a culturally relevant version of the fairy tale Goldilocks and the Three Bears. Lessons implemented as part of school-university partnerships support Black and Latinx children's development of a sense of belonging in STEAM. Further, these experiences enhance teacher candidates' abilities to engage in culturally responsive STEAM teaching while receiving ongoing guidance and education from university faculty and school-based educators. Teacher education programs within higher education institutions should embrace school- university partnerships as contexts for the development of shared scientific knowledge and discourse since the benefits are twofold. First, children and teachers gain access to, and engage with, innovative STEAM experiences. Second, preservice teachers learn culturally relevant research-based instructional strategies through university coursework situated in authentic learning experiences; thus, their learning as teacher candidates is enhanced through planning, implementation, evaluation, and critical reflection. 
    more » « less
  2. Abstract

    Children’s memberships in social groups have profound effects on their motivation. Stereotypes about social groups shape children’s beliefs about what is expected for their group members. These beliefs can influence children’s developing beliefs about themselves (self‐perceptions). In this article, I review research on how gender stereotypes influence children’s motivation in science, technology, engineering, and math (STEM), including ability beliefs and sense of belonging. When children belong to a gender group that is negatively stereotyped in a STEM field, they may doubt their own capabilities and whether they belong in that field, making it harder for them to develop interest over time. Developmentally, the influence of gender stereotypes on motivation begins during preschool and strengthens during late childhood. I also address the consequences of different kinds of stereotypes and why some children are more influenced by stereotypes than others. Understanding this process in childhood will help researchers design effective interventions to remedy educational inequities in STEM.

     
    more » « less
  3. There is growing interest in stories as potentially powerful tools for science learning. In this mini-review article, we discuss theory and evidence indicating that, especially for young children, listening to and sharing stories with adult caregivers at home can make scientific ideas and inquiry practices meaningful and accessible. We review recent research offering evidence that stories presented in books can advance children’s science learning. Nonetheless, most of this work focuses on middle-class European-American U. S. children and involves narrative story books. Given the national imperative to increase Latine 1 representation in STEM education and career pursuits in the U. S., we argue that it is vital that we broaden the definition of stories to include oral narrative storytelling and other conversational routines that Latine families engage in at home. Cultural communities with firmly rooted oral traditions, such as those from Latin American heritage, rely frequently on oral storytelling rather than book reading to convey world and community knowledge to young children. Therefore, we advocate for a strengths-based approach that considers Latine families’ everyday practices around science and storytelling on their own terms instead of contrasting them with European-American middle-class practices. We offer support for the view that for young children in Latine communities, culturally relevant oral practices, including personal narrative storytelling, can engender significant opportunities for family science learning at home. 
    more » « less
  4. The impact of robotics has grown beyond research laboratories and industrial facilities into home environments and primary and secondary school classrooms. Of particular interest to us are robots for education. In general, educational robotics kits are expensive and proprietary, or cheap and unreliable. This research seeks to bridge that gap by providing a hands-on open-source robotics learning environment that is both inexpensive and reliable. In this paper, we review the applicability of such environments to support the synergistic learning of computational thinking (CT) and STEM, with an emphasis on Computer Science (CS) concepts and practices. The CT and Advanced Placement CS Principles frameworks (from the US) govern the design and implementation of our system. We discuss the hardware system of the robot and the accompanying software architecture that runs on Linux-based single board computers. We conclude with results from a small pilot study analyzing the usability and curricular effectiveness of the system. 
    more » « less
  5. The impact of robotics has grown beyond research laboratories and industrial facilities into home environments and primary and secondary school classrooms. Of particular interest to us are robots for education. In general, educational robotics kits are expensive and proprietary, or cheap and unreliable. This research seeks to bridge that gap by providing a hands-on open-source robotics learning environment that is both inexpensive and reliable. In this paper, we review the applicability of such environments to support the synergistic learning of computational thinking (CT) and STEM, with an emphasis on Computer Science (CS) concepts and practices. The CT and Advanced Placement CS Principles frameworks (from the US) govern the design and implementation of our system. We discuss the hardware system of the robot and the accompanying software architecture that runs on Linux-based single board computers. We conclude with results from a small pilot study analyzing the usability and curricular effectiveness of the system. 
    more » « less