skip to main content

Title: Design and Development of a Low-Cost Open-Source Robotics Education Platform
The impact of robotics has grown beyond research laboratories and industrial facilities into home environments and primary and secondary school classrooms. Of particular interest to us are robots for education. In general, educational robotics kits are expensive and proprietary, or cheap and unreliable. This research seeks to bridge that gap by providing a hands-on open-source robotics learning environment that is both inexpensive and reliable. In this paper, we review the applicability of such environments to support the synergistic learning of computational thinking (CT) and STEM, with an emphasis on Computer Science (CS) concepts and practices. The CT and Advanced Placement CS Principles frameworks (from the US) govern the design and implementation of our system. We discuss the hardware system of the robot and the accompanying software architecture that runs on Linux-based single board computers. We conclude with results from a small pilot study analyzing the usability and curricular effectiveness of the system.
Authors:
Award ID(s):
1735909
Publication Date:
NSF-PAR ID:
10072964
Journal Name:
Proceedings of the 50th International Symposium on Robotics. Munich
Sponsoring Org:
National Science Foundation
More Like this
  1. The impact of robotics has grown beyond research laboratories and industrial facilities into home environments and primary and secondary school classrooms. Of particular interest to us are robots for education. In general, educational robotics kits are expensive and proprietary, or cheap and unreliable. This research seeks to bridge that gap by providing a hands-on open-source robotics learning environment that is both inexpensive and reliable. In this paper, we review the applicability of such environments to support the synergistic learning of computational thinking (CT) and STEM, with an emphasis on Computer Science (CS) concepts and practices. The CT and Advanced Placementmore »CS Principles frameworks (from the US) govern the design and implementation of our system. We discuss the hardware system of the robot and the accompanying software architecture that runs on Linux-based single board computers. We conclude with results from a small pilot study analyzing the usability and curricular effectiveness of the system.« less
  2. The recognition of middle grades as a critical juncture in CS education has led to the widespread development of CS curricula and integration efforts. The goal of many of these interventions is to develop a set of underlying abilities that has been termed computational thinking (CT). This goal presents a key challenge for assessing student learning: we must identify assessment items associated with an emergent understanding of key cognitive abilities underlying CT that avoid specialized knowledge of specific programming languages. In this work we explore the psychometric properties of assessment items appropriate for use with middle grades (US grades 6-8;more »ages 11-13) students. We also investigate whether these items measure a single ability dimension. Finally, we strive to recommend a "lean" set of items that can be completed in a single 50-minute class period and have high face validity. The paper makes the following contributions: 1) adds to the literature related to the emerging construct of CT, and its relationship to the existing CTt and Bebras instruments, and 2) offers a research-based CT assessment instrument for use by both researchers and educators in the field.« less
  3. There is a growing movement seeking to promote Computer Science (CS) and Computational Thinking (CT) across K-8 education. While advantageous for supporting student learning through engaging in complex and interdisciplinary learning, integrating CS/CT into the elementary school curriculum can pose curricular and pedagogical challenges. For one, teachers themselves must understand the concepts and disciplinary practices associated with CS/CT and the other content areas being integrated, as well as develop a related pedagogical repertoire. This study addresses how two 3rd grade teachers made sense of the intersection of disciplinary practices and pedagogical practices to support student learning. We present preliminary findingsmore »from a Research-Practice Partnership that worked with elementary teachers to integrate aspects of CS/CT practice into existing content areas. We identified two main disciplinary activities that drove their curriculum design and pedagogical practices: (1) the importance of productive frustration and failure; and (2) the importance of precision« less
  4. Despite the recent proliferation of research concerning integrating computational thinking (CT) into K-5th grade curriculum, there is little literature concerning how to evaluate the quality of CT integrated curricula, especially curricula integrating CT into language arts and social studies content areas. In this paper, we present a theoretically derived rubric for the evaluation of CT integrated curricula for grades K-5 across the curriculum (math, science, language arts, social studies). Our rubric is divided into two sections. The first section provides guidelines for identifying the integration type (disciplinary, multidisciplinary, interdisciplinary, or transdisciplinary). The second section presents six categories of evaluation thatmore »further subsume nine sub-categories. The principal categories of evaluation include the following: conceptual coherence, role of computational technology, assessment, use of multiple representations, play, and equity. We include the play category as an aspect of developmental appropriateness. Play is an important pedagogical approach for learning in the early grades. Our work takes place in the context of the Computer Science (CS) for All initiative in the United States which emphasizes the goal of improving racial and gender diversity in CS participation. Therefore, creating integrated lessons that address equity is important. Our paper describes rubric development from the theoretical perspectives that underlie the inclusion of each type, category, and sub-category. Our evaluative rubric can guide future efforts to integrate CT/CS into the elementary curricula. Researchers can utilize our rubric to evaluate and analyze CT-integrated curricula, and educators can benefit from using this rubric as a guideline for curriculum development.« less
  5. In order to expand opportunities to learn computer science (CS),there is a growing push for inclusion of CS concepts and practices, such as computational thinking (CT), in required subjects like science. Integrated, transdisciplinary (CS/CT+X) approaches have shown promise for broadening access to CS and CT learning opportunities, addressing potential self-selection bias associated with elective CS coursework and afterschool programs, and promotinga more expansive and authentic contextualization of CS work. Emerging research also points to pedagogical strategies that can transcend simply broadening access, by also working to confront barriers to equitable and inclusive engagement in CS. Yet, approaches to integration varymore »widely, and there is little consensus on whether and how different models for CS and CT integration contribute to desired outcomes. There has also been little theory development that can ground systematic examination of the affordances and tradeoffs of different models. Toward that end, we propose a typology through which to examine CT integration in science (CT+S). The purpose of delineating a typology of CT+S integration is to encourage instantiation, implementation, and inspection of different models for integration, and to promote shared understanding among learning designers, researchers, and practitioners working at the intersection of CT and science. For each model in the typology, we characterize how CT+S integration is accomplished, the ways in which CT learning supports science learning, and the affordances and tensions for equity and inclusion that may arise upon implementation in science classrooms.« less