skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on October 16, 2024

Title: Majorization Minimization Methods for Distributed Pose Graph Optimization
We consider the problem of distributed pose graph optimization (PGO) that has important applications in multi- robot simultaneous localization and mapping (SLAM). We pro- pose the majorization minimization (MM) method for distributed PGO (MM−PGO) that applies to a broad class of robust loss kernels. The MM−PGO method is guaranteed to converge to first-order critical points under mild conditions. Furthermore, noting that the MM−PGO method is reminiscent of proximal methods, we leverage Nesterov’s method and adopt adaptive restarts to accelerate convergence. The resulting accelerated MM methods for distributed PGO—both with a master node in the network (AMM−PGO∗) and without (AMM−PGO#)— have faster convergence in contrast to the MM−PGO method without sacrificing theoretical guarantees. In particular, the AMM−PGO# method, which needs no master node and is fully decentralized, features a novel adaptive restart scheme and has a rate of convergence comparable to that of the AMM−PGO∗ method using a master node to aggregate information from all the nodes. The efficacy of this work is validated through extensive applications to 2D and 3D SLAM benchmark datasets and comprehensive comparisons against existing state-of-the-art methods, indicating that our MM methods converge faster and result in better solutions to distributed PGO. The code is available at https://github.com/MurpheyLab/DPGO.  more » « less
Award ID(s):
1837515
NSF-PAR ID:
10471781
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Robotics
ISSN:
1552-3098
Page Range / eLocation ID:
1 to 20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, we consider the problem of distributed pose graph optimization (PGO) that has extensive applications in multi-robot simultaneous localization and mapping (SLAM). We propose majorization minimization methods for distributed PGO and show that our proposed methods are guaranteed to converge to first-order critical points under mild conditions. Furthermore, since our proposed methods rely a proximal operator of distributed PGO, the convergence rate can be significantly accelerated with Nesterov’s method, and more importantly, the acceleration induces no compromise of theoretical guarantees. In addition, we also present accelerated majorization minimization methods for the distributed chordal initialization that have a quadratic convergence, which can be used to compute an initial guess for distributed PGO. The efficacy of this work is validated through applications on a number of 2D and 3D SLAM datasets and comparisons with existing state-of-the-art methods, which indicates that our proposed methods have faster convergence and result in better solutions to distributed PGO. 
    more » « less
  2. null (Ed.)
    In this paper, we generalize proximal methods that were originally designed for convex optimization on normed vector space to non-convex pose graph optimization (PGO) on special Euclidean groups, and show that our proposed generalized proximal methods for PGO converge to first-order critical points. Furthermore, we propose methods that significantly accelerate the rates of convergence almost without loss of any theoretical guarantees. In addition, our proposed methods can be easily distributed and parallelized with no compromise of efficiency. The efficacy of this work is validated through implementation on simultaneous localization and mapping (SLAM) and distributed 3D sensor network localization, which indicate that our proposed methods are a lot faster than existing techniques to converge to sufficient accuracy for practical use. 
    more » « less
  3. We present a novel framework for collaboration amongst a team of robots performing Pose Graph Optimization (PGO) that addresses two important challenges for multi-robot SLAM: i) that of enabling information exchange "on-demand" via Active Rendezvous without using a map or the robot's location, and ii) that of rejecting outlying measurements. Our key insight is to exploit relative position data present in the communication channel between robots to improve groundtruth accuracy of PGO. We develop an algorithmic and experimental framework for integrating Channel State Information (CSI) with multi-robot PGO; it is distributed, and applicable in low-lighting or featureless environments where traditional sensors often fail. We present extensive experimental results on actual robots and observe that using Active Rendezvous results in a 64% reduction in ground truth pose error and that using CSI observations to aid outlier rejection reduces ground truth pose error by 32%. These results show the potential of integrating communication as a novel sensor for SLAM. 
    more » « less
  4. In this paper, we present CPL-Sync, a certifiably correct algorithm to solve planar pose graph optimization (PGO) using the complex number representation. We formulate planar PGO as the maximum likelihood estimation (MLE) on the product of unit complex numbers, and relax this nonconvex quadratic complex optimization problem to complex semidefinite programming (SDP). Furthermore, we simplify the corresponding semidefinite programming to Riemannian staircase optimization (RSO) on complex oblique manifolds that can be solved with the Riemannian trust region (RTR) method. In addition, we prove that the SDP relaxation and RSO simplification are tight as long as the noise magnitude is below a certain threshold. The efficacy of this work is validated through comparisons with existing methods as well as applications on planar PGO in simultaneous localization and mapping (SLAM), which indicates that the proposed algorithm is more efficient and capable of solving planar PGO certifiably. The C++ code for CPL-Sync is available at https://github. com/fantaosha/CPL- Sync. 
    more » « less
  5. null (Ed.)
    In this paper, we consider distributed algorithms for solving the empirical risk minimization problem under the master/worker communication model. We develop a distributed asynchronous quasi-Newton algorithm that can achieve superlinear convergence. To our knowledge, this is the first distributed asynchronous algorithm with superlinear convergence guarantees. Our algorithm is communication-efficient in the sense that at every iteration the master node and workers communicate vectors of size 𝑂(𝑝), where 𝑝 is the dimension of the decision variable. The proposed method is based on a distributed asynchronous averaging scheme of decision vectors and gradients in a way to effectively capture the local Hessian information of the objective function. Our convergence theory supports asynchronous computations subject to both bounded delays and unbounded delays with a bounded time-average. Unlike in the majority of asynchronous optimization literature, we do not require choosing smaller stepsize when delays are huge. We provide numerical experiments that match our theoretical results and showcase significant improvement comparing to state-of-the-art distributed algorithms. 
    more » « less