Abstract Research in quadrupedal robotics is transitioning to studies into loco-manipulation, featuring fully articulated robotic arms mounted atop these robots. Integrating such arms enhances the practical utility of legged robots, paving the way for expanded applications like industrial inspection and search and rescue. Existing literature commonly employs a six-degree-of-freedom (six-DoF) arm directly mounted to the robot, which inherently adds significant weight and reduces the available payload for manipulation tasks. Our study explores an optimized combination of arm configuration and control framework by strategically reducing the DoFs and leveraging the quadruped robot’s inherent agile mobility. We demonstrate that by minimizing the DoFs to just one, a range of canonical loco-manipulation tasks can still be accomplished. Some tasks even show improved performance with fewer robotic arm DoFs due to the higher torque motor used in the design, allowing more of the robot’s payload to be used for manipulation. We designed our optimized one-DoF robotic arm and the control framework and tested it on top of a Unitree Aliengo. Our design outperforms conventional six-DoF counterparts in lifting capacity, achieving an impressive 8 kg payload compared to the 2 kg maximum payload of industry-standard six-DoF robotic arms on the same quadruped platform.
more »
« less
Spacecraft-Mounted Robotics
Space-mounted robotics is becoming increasingly mainstream for many space missions. The aim of this article is threefold: first, to give a broad and quick overview of the importance of spacecraft-mounted robotics for future in-orbit servicing missions; second, to review the basic current approaches for modeling and control of spacecraft-mounted robotic systems; and third, to introduce some new developments in terms of modeling and control of spacecraft-mounted robotic manipulators using the language of hypercomplex numbers (dual quaternions). Some outstanding research questions and potential future directions in the field are also discussed.
more »
« less
- Award ID(s):
- 2101250
- PAR ID:
- 10471878
- Publisher / Repository:
- Annual Reviews
- Date Published:
- Journal Name:
- Annual Review of Control, Robotics, and Autonomous Systems
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2573-5144
- Page Range / eLocation ID:
- 335 to 362
- Subject(s) / Keyword(s):
- robotics manipulators in-orbit servicing control trajectory tracking dual quaternions dynamics kinematics
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose a nonlinear hybrid dual quaternion feedback control law for multibody spacecraft-mounted robotic systems (SMRSs) pose control. Indeed, screw theory expressed via a unit dual quaternion representation and its associated algebra can be used to compactly formulate both the forward (position and velocity) kinematics and pose control of [Formula: see text]-degree-of-freedom robot manipulators. Recent works have also established the necessary theory for expressing the rigid multibody dynamics of an SMRS in dual quaternion algebra. Given the established framework for expressing both kinematics and dynamics of general [Formula: see text]-body SMRSs via dual quaternions, this paper proposes a dual quaternion control law that achieves simultaneous global asymptotically stable pose tracking for the end effector and the spacecraft base of an SMRS. The proposed hybrid control law is robust to chattering caused by noisy feedback and avoids the unwinding phenomenon innate to continuous-based (dual) quaternion controllers. Additionally, an actuator allocation technique is proposed in the neighborhood of system singularities to ensure bounded control inputs, with minimum deviation from the specified spacecraft base and end-effector trajectories during controller execution.more » « less
-
Timelines are critical in space exploration. Timelines facilitate planning, resource management, and automation of uncrewed missions. As NASA and other space agencies increasingly rely on timelines for autonomous spacecraft operations, ensuring their understandability and verifiability is essential for mission success. However, interdisciplinary design teams face challenges in interpreting timelines due to variations in cultural and educational backgrounds, leading to communication barriers and potential system mismatches. This work-in-progress research explores time-oriented data visualizations to improve timeline comprehension in space systems. We contribute (1) a survey of visualization techniques, identifying patterns and gaps in historic time-oriented data visualizations and industry tools, (2) a focus group pilot study analyzing user interpretations of timeline visualizations, and (3) a novel method for visualizing aggregate runs of a timeline on a complex system, including identification of key features for usability of aggregate-data visuals. Our findings inform future visualization strategies for debugging and verifying timelines in uncrewed systems. While focused on space, this research has broader implications for aerospace, robotics, and emergency response systems.more » « less
-
The use of blockchain in cyber-physical systems, such as robotics, is an area with immense potential to address many shortcomings in robotic coordination and control. In traditional swarm robotic applications, where homogeneous robots are utilized, it is possible to replace a robot if it malfunctions, and it can be assumed that all robots are interchangeable. However, in many real-world applications spanning from search and rescue missions to future household robotic appliances, heterogeneous robots will need to work together with the other robots and human agents to achieve specific tasks. Nevertheless, no such system exists. Therefore, we propose a system that utilizes a token economy for robotic agents that makes agents responsive to token acquisition as an incentive for collaboration in achieving a given task. The economy enables the system to self-govern, even under Byzantine and adversarial settings. We further incorporate a novel subcontracting framework within a blockchain environment to allow the robotic agents to efficiently and cost-effectively perform complex jobs requiring multiple agents with various capabilities. We conducted a thorough evaluation of the system in a prototype warehouse application scenario, and the results are promising.more » « less
-
This paper presents a parameter governor-based control approach to constrained spacecraft rendezvous and docking (RVD) in the setting of the Two-Body problem with gravitational perturbations. An add-on to the nominal closed-loop system, the Time Shift Governor (TSG) is developed, which provides a time-shifted Chief spacecraft trajectory as a target reference for the Deputy spacecraft, and enforces various constraints during RVD missions, such as Line of Sight cone constraints, total magnitude of thrust limit, relative velocity constraint, and exponential convergence to the target during RVD missions. As the time shift diminishes to zero, the virtual target incrementally aligns with the Chief spacecraft over time. The RVD mission is completed when the Deputy spacecraft achieves the virtual target with zero time shift, which corresponds to the Chief spacecraft. Simulation results for the RVD mission in an elliptic orbit around the Earth are presented to validate the proposed control strategy.more » « less
An official website of the United States government

