skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 21, 2026

Title: Understanding Time in Space: Improving Timeline Understandability for Uncrewed Space Systems
Timelines are critical in space exploration. Timelines facilitate planning, resource management, and automation of uncrewed missions. As NASA and other space agencies increasingly rely on timelines for autonomous spacecraft operations, ensuring their understandability and verifiability is essential for mission success. However, interdisciplinary design teams face challenges in interpreting timelines due to variations in cultural and educational backgrounds, leading to communication barriers and potential system mismatches. This work-in-progress research explores time-oriented data visualizations to improve timeline comprehension in space systems. We contribute (1) a survey of visualization techniques, identifying patterns and gaps in historic time-oriented data visualizations and industry tools, (2) a focus group pilot study analyzing user interpretations of timeline visualizations, and (3) a novel method for visualizing aggregate runs of a timeline on a complex system, including identification of key features for usability of aggregate-data visuals. Our findings inform future visualization strategies for debugging and verifying timelines in uncrewed systems. While focused on space, this research has broader implications for aerospace, robotics, and emergency response systems.  more » « less
Award ID(s):
2152117
PAR ID:
10617535
Author(s) / Creator(s):
;
Publisher / Repository:
Schloss Dagstuhl
Date Published:
Subject(s) / Keyword(s):
Human-Centered Design, Time-Oriented Data Visualization, Uncrewed Spacecraft Operations, Formal Methods
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Data literacy, an important goal for social studies education, involves teaching students how to comprehend, analyze, interpret, evaluate, create, and argue with data and data visualizations such as timelines, maps, and graphs. Digital data visualizations support rapid inquiry and explorations that would be difficult on paper - such as adding data to an existing data visualization or creating multiple data visualizations of the same variable at multiple times or places for easy comparison. The process of asking questions and finding answers through data exploration is an important part of social studies education. While the authors recognize that there are many online data visualization tools that can be used in classrooms, they designed their tools, DV4L and Timeline Builder, specifically for use in social studies classrooms and based on feedback from prospective and current teachers. The authors have taken care to include features that teachers said would be useful in social studies data inquiry lessons and activities. These are still in a prototype phase, but are free to use and online. 
    more » « less
  2. Timelines are commonly represented on a horizontal line, which is not necessarily the most effective way to visualize temporal event sequences. However, few experiments have evaluated how timeline shape influences task performance. We present the design and results of a controlled experiment run on Amazon Mechanical Turk (n=192) in which we evaluate how timeline shape affects task completion time, correctness, and user preference. We tested 12 combinations of 4 shapes --- horizontal line, vertical line, circle, and spiral — and 3 data types — recurrent, non-recurrent, and mixed event sequences. We found good evidence that timeline shape meaningfully affects user task completion time but not correctness and that users have a strong shape preference. Building on our results, we present design guidelines for creating effective timeline visualizations based on user task and data types. A free copy of this paper, the evaluation stimuli and data, and code are available https://osf.io/qr5yu/ 
    more » « less
  3. null (Ed.)
    Distributed file systems present distinctive forensic challenges in comparison to traditional locally mounted file system volume. Storage device media can number in the thousands, and forensic investigations in this setting necessitate a tailored approach to data collection. The Hadoop Distributed File System (HFDS) produces and maintains partially persistent metadata that is pursuant with a logical volume, a file system, and file addresses on the centralized server. Hence, this research investigates the viability of using a residual central server digital artifact to generate a history model of the distributed file system. The history model affords an investigator a high-level perspective of low-level events to narrow investigative process obligations. The model is generated through set-theoretic relations of the file system essential data structure. Graph-theoretic ordering is applied to the events to provide a history model. The research contribution is a rapid reconstruction of the HDFS storage state transitions generating timelines for system events to forensically assess HDFS properties with conceptual similarity to traditional low-level file system forensic tool output. The results of this research provide a prototype tool, DFS3, for rapid and noninvasive data storage state timeline reconstruction in a big data distributed file system. 
    more » « less
  4. While there are numerous causes of waste in the healthcare system, some of this waste is associated with inefficiency. Among the proposed solutions to address inefficiency is clinic layout optimization. Such optimization depends on how operating resources and instruments are placed in the clinic, in what order they are accessed to attain a particular task, and the mobility of clinicians between different clinic rooms to accomplish different clinic tasks. Traditionally, such optimization research involves manual monitoring by human proctors, which is time consuming, erroneous, unproductive, and subjective. If mobility patterns in an indoor space can be determined automatically in real time, layout and operation-related optimization decisions based on these patterns can be implemented accurately and continuously in a timely fashion. This paper explores this application domain where precise localization is not required; however, the determination of mobility is essential on a real-time basis. Given that, this research explores how only mobile devices and their built-in Bluetooth received signal strength indicator (RSSI) can be used to determine such mobility. With a collection of stationary mobile devices, with their computational and networking capabilities and lack of energy requirements, the mobility of moving mobile devices was determined. The research methodology involves developing two new algorithms that use raw RSSI data to create visualizations of movements across different operational units identified by stationary nodes. Compared with similar approaches, this research showcases that the method presented in this paper is viable and can produce mobility patterns in indoor spaces that can be utilized further for data analysis and visualization. 
    more » « less
  5. jTLEX is a programming library that provides a Java implementation of the TimeLine EXtraction algorithm (TLEX; Finlayson et al.,2021), along with utilities for programmatic manipulation of TimeML graphs. Timelines are useful for a number of natural language understanding tasks, such as question answering, cross-document event coreference, and summarization & visualization. jTLEX provides functionality for (1) parsing TimeML annotations into Java objects, (2) construction of TimeML graphs from scratch, (3) partitioning of TimeML graphs into temporally connected subgraphs, (4) transforming temporally connected subgraphs into point algebra (PA) graphs, (5) extracting exact timeline of TimeML graphs, (6) detecting inconsistent subgraphs, and (7) calculating indeterminate sections of the timeline. The library has been tested on the entire TimeBank corpus, and comes with a suite of unit tests. We release the software as open source with a free license for non-commercial use. 
    more » « less