The growing number of applications in Cyber-Physical Systems (CPS) involving different types of robots while maintaining interoperability and trust is an ongoing challenge faced by traditional centralized systems. This paper presents what is, to the best of our knowledge, the first integration of the Robotic Operating System (ROS) with the Ethereum blockchain using physical robots. We implement a specialized smart contract framework called “Swarm Contracts” that rely on blockchain technology in real-world applications for robotic agents with human interaction to perform collaborative tasks while ensuring trust by motivating the agents with incentives using a token economy with a self-governing structure. The use of open-source technologies, including robot hardware platforms such as TurtleBot3, Universal Robot arm, and ROS, enables the ability to connect a wide range of robot types to the framework we propose. Going beyond simulations, we demonstrate the robustness of the proposed system in real-world conditions with actual hardware robots. 
                        more » 
                        « less   
                    
                            
                            Blockchain-Based Mechanism for Robotic Cooperation Through Incentives: Prototype Application in Warehouse Automation
                        
                    
    
            The use of blockchain in cyber-physical systems, such as robotics, is an area with immense potential to address many shortcomings in robotic coordination and control. In traditional swarm robotic applications, where homogeneous robots are utilized, it is possible to replace a robot if it malfunctions, and it can be assumed that all robots are interchangeable. However, in many real-world applications spanning from search and rescue missions to future household robotic appliances, heterogeneous robots will need to work together with the other robots and human agents to achieve specific tasks. Nevertheless, no such system exists. Therefore, we propose a system that utilizes a token economy for robotic agents that makes agents responsive to token acquisition as an incentive for collaboration in achieving a given task. The economy enables the system to self-govern, even under Byzantine and adversarial settings. We further incorporate a novel subcontracting framework within a blockchain environment to allow the robotic agents to efficiently and cost-effectively perform complex jobs requiring multiple agents with various capabilities. We conducted a thorough evaluation of the system in a prototype warehouse application scenario, and the results are promising. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10354342
- Date Published:
- Journal Name:
- IEEE International Conference on Blockchain (Blockchain)
- Page Range / eLocation ID:
- 597 to 604
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            As the use of autonomous vehicles increase, the transportation infrastructure as a whole becomes more susceptible to cyber-attacks due to the increase of components that can communicate with one another and the Internet. It has been shown that autonomous vehicles benefit greatly from cooperating to perform many cost and life-saving applications such as tailgating, advanced collision warning, and even traffic routing. To secure the transportation infrastructure against this increasing risk, this paper presents an efficient blockchain scheme for vehicular ad-hoc networks of autonomous vehicles. In the proposed scheme, every vehicle maintains blocks generated by its platoon which contain transactions that evaluate the actions of every vehicle. Thus, vehicles will possess different blocks and thus different blockchains as they join and leave platoons. No central blockchain is maintained. These blocks are used as a token by the vehicle to gain access to future platoons. The proposed scheme uses the Schnorr digital signature scheme to create a secure signature and reach consensus within the platoon. It is proven to be secure under the given assumptions.more » « less
- 
            Abstract Double auction mechanisms have been designed to trade a variety of divisible resources (e.g., electricity, mobile data, and cloud resources) among distributed agents. In such divisible double auction, all the agents (both buyers and sellers) are expected to submit their bid profiles, and dynamically achieve the best responses. In practice, these agents may not trust each other without a market mediator. Fortunately, smart contract is extensively used to ensure digital agreement among mutually distrustful agents. The consensus protocol helps the smart contract execution on the blockchain to ensure strong integrity and availability. However, severe privacy risks would emerge in the divisible double auction since all the agents should disclose their sensitive data such as the bid profiles (i.e., bid amount and prices in different iterations) to other agents for resource allocation and such data are replicated on all the nodes in the network. Furthermore, the consensus requirements will bring a huge burden for the blockchain, which impacts the overall performance. To address these concerns, we propose a hybridized TEE-Blockchain system (system and auction mechanism co-design) to privately execute the divisible double auction. The designed hybridized system ensures privacy, honesty and high efficiency among distributed agents. The bid profiles are sealed for optimally allocating divisible resources while ensuring truthfulness with a Nash Equilibrium. Finally, we conduct experiments and empirical studies to validate the system and auction performance using two real-world applications.more » « less
- 
            Blockchain interoperability, which allows state transitions across different blockchain networks, is critical functionality to facilitate major blockchain adoption. Existing interoperability protocols mostly focus on atomic token exchanges between blockchains. However, as blockchains have been upgraded from passive distributed ledgers into programmable state machines (thanks to smart contracts), the scope of blockchain interoperability goes beyond just token exchanges. In this paper, we present HyperService, the first platform that delivers interoperability and programmability across heterogeneous blockchains. HyperService is powered by two innovative designs: (i) a developer-facing programming framework that allows developers to build cross-chain applications in a unified programming model; and (ii) a secure blockchain-facing cryptography protocol that provably realizes those applications on blockchains. We implement a prototype of HyperService in approximately 35,000 lines of code to demonstrate its practicality. Our experiments show that (i) HyperService imposes reasonable latency, in order of seconds, on the end-to-end execution of cross-chain applications; (ii) the HyperService platform is scalable to continuously incorporate new large-scale production blockchains.more » « less
- 
            Blockchain has emerged as a solution for ensuring accurate and truthful environmental variable monitoring needed for the management of pollutants and natural resources. The immutability property of blockchain helps protect the measured data on pollution and natural resources to enable truthful reporting and effective management and control of polluting agents. However, specifics on what to measure, how to use blockchain, and highlighting which blockchain frameworks have been adopted need to be explored to fill the research gaps. Therefore, we review existing works on the use of blockchain for monitoring and managing environmental variables in this paper. Specifically, we examine existing blockchain applications on greenhouse gas emissions, solid and plastic waste, food waste, food security, water usage, and the circular economy and identify what motivates the adoption of blockchain, features sought, used blockchain frameworks and consensus algorithms, and the adopted supporting technologies to complement data sensing and reporting. We conclude the review by identifying practical works that provide implementation details for rapid adoption and remaining challenges that merit future research.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    