skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Observations of Ocean Surface Wave Attenuation in Sea Ice Using Seafloor Cables
Abstract The attenuation of ocean surface waves during seasonal ice cover is an important control on the evolution of Arctic coastlines. The spatial and temporal variations in this process have been challenging to resolve with conventional sampling using sparse arrays of moorings or buoys. We demonstrate a novel method for persistent observation of wave‐ice interactions using distributed acoustic sensing (DAS) along existing seafloor fiber optic telecommunications cables. DAS measurements span a 36‐km cross‐shore cable on the Beaufort Shelf from Oliktok Point, Alaska. DAS optical sensing of fiber strain‐rate provides a proxy for seafloor pressure, which we calibrate with wave buoy measurements during the ice‐free season (August 2022). We apply this calibration during the ice formation season (November 2021) to obtain unprecedented resolution of variable wave attenuation rates in new, partial ice cover. The location and strength of wave attenuation serve as proxies for ice coverage and thickness, especially during rapidly evolving events.  more » « less
Award ID(s):
2214651
PAR ID:
10471983
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
20
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This dataset contains processed ocean surface gravity wave parameters derived from interrogation of a seafloor fiber with distributed acoustic sensing (DAS). These measurements were taken on a fiber within a cable owned by Quintillion extending off the coast near Oliktok Point, Alaska in November 2021 and August 2022. Processing includes calculation of frequency-dependent, channel-specific correction factors using collocated wave buoy (SWIFT) observations, which is then multiplied by the PSD of raw strain-rate. A depth-attenuation correction is then also applied. Dataset includes the raw strain-rate spectra and the derived wave spectra, as well as bulk wave parameters including significant wave height (Hs), peak wave period (Tp), and energy-weighted wave period (Te). 
    more » « less
  2. This dataset contains processed ocean surface gravity wave parameters derived from interrogation of a seafloor fiber with distributed acoustic sensing (DAS). These measurements were taken on a fiber within a cable owned by Quintillion extending off the coast near Oliktok Point, Alaska in November 2021 and August 2022. Processing includes calculation of frequency-dependent, channel-specific correction factors using collocated wave buoy (SWIFT) observations, which is then multiplied by the PSD of raw strain-rate. A depth-attenuation correction is then also applied. Dataset includes the raw strain-rate spectra and the derived wave spectra, as well as bulk wave parameters including significant wave height (Hs), peak wave period (Tp), and energy-weighted wave period (Te). 
    more » « less
  3. Seafloor moorings measuring pressure and temperature were deployed from April to September 2023 at three sites near the route of the fiber optic telecommunications cable that extends offshore of Oliktok Point, Alaska. The raw data data (1 Hertz (Hz) sampling) are processed for hourly estimates of the ocean surface wave conditions, along with average seawater temperature and average depth. The sites were ice-covered from April to July, then mostly open water in August and September. The data were collected to calibrate proxy wave measurements using Distributed Acoustic Sensing (DAS) from the telecommunications cable. 
    more » « less
  4. Abstract Distributed acoustic sensing (DAS) is a recently developed technique that has demonstrated its utility in the oil and gas industry. Here we demonstrate the potential of DAS in teleseismic studies using the Goldstone OpticaL Fiber Seismic experiment in Goldstone, California. By analyzing teleseismic waveforms from the 10 January 2018 M7.5 Honduras earthquake recorded on ~5,000 DAS channels and the nearby broadband station GSC, we first compute receiver functions for DAS channels using the vertical‐component GSC velocity as an approximation for the incident source wavelet. The MohoP‐to‐sconversions are clearly visible on DAS receiver functions. We then derive meter‐scale arrival time measurements along the entire 20‐km‐long array. We are also able to measure path‐averaged Rayleigh wave group velocity and local Rayleigh wave phase velocity. The latter, however, has large uncertainties. Our study suggests that DAS will likely play an important role in many fields of passive seismology in the near future. 
    more » « less
  5. Tsunami wave observations far from the coast remain challenging due tothe logistics and cost of deploying and operating offshoreinstrumentation on a long-term basis with sufficient spatial coverageand density. Distributed Acoustic Sensing (DAS) on submarine fiber opticcables now enables real-time seafloor strain observations over distancesexceeding 100 km at a relatively low cost. Here, we evaluate thepotential contribution of DAS to tsunami warning by assessingtheoretically the sensitivity required by a DAS instrument to recordtsunami waves. Our analysis includes signals due to two effects induced by thehydrostatic pressure perturbations arising from tsunami waves: thePoisson’s effect of the submarine cable and the compliance effect of theseafloor. It also includes the effect of seafloor shear stresses andtemperature transients induced by the horizontal fluid flow associatedwith tsunami waves. The analysis is supported by fully coupled 3-Dphysics-based simulations of earthquake rupture, seismo-acoustic wavesand tsunami wave propagation. The strains from seismo-acoustic waves andstatic deformation near the earthquake source are orders of magnitudelarger than the tsunami strain signal. We illustrate a data processingprocedure to discern the tsunami signal. With enhanced low-frequencysensitivity on DAS interrogators (strain sensitivity ≈2×10 at mHz frequencies), we find that, on seafloorcables located above or near the earthquake source area, tsunamis areexpected to be observable with a sufficient signal-to-noise ratio withina few minutes of the earthquake onset. These encouraging results pavethe way towards faster tsunami warning enabled by seafloor DAS. 
    more » « less