This dataset contains processed ocean surface gravity wave parameters derived from interrogation of a seafloor fiber with distributed acoustic sensing (DAS). These measurements were taken on a fiber within a cable owned by Quintillion extending off the coast near Oliktok Point, Alaska in November 2021 and August 2022. Processing includes calculation of frequency-dependent, channel-specific correction factors using collocated wave buoy (SWIFT) observations, which is then multiplied by the PSD of raw strain-rate. A depth-attenuation correction is then also applied. Dataset includes the raw strain-rate spectra and the derived wave spectra, as well as bulk wave parameters including significant wave height (Hs), peak wave period (Tp), and energy-weighted wave period (Te).
more »
« less
Observations of Ocean Surface Wave Attenuation in Sea Ice Using Seafloor Cables
Abstract The attenuation of ocean surface waves during seasonal ice cover is an important control on the evolution of Arctic coastlines. The spatial and temporal variations in this process have been challenging to resolve with conventional sampling using sparse arrays of moorings or buoys. We demonstrate a novel method for persistent observation of wave‐ice interactions using distributed acoustic sensing (DAS) along existing seafloor fiber optic telecommunications cables. DAS measurements span a 36‐km cross‐shore cable on the Beaufort Shelf from Oliktok Point, Alaska. DAS optical sensing of fiber strain‐rate provides a proxy for seafloor pressure, which we calibrate with wave buoy measurements during the ice‐free season (August 2022). We apply this calibration during the ice formation season (November 2021) to obtain unprecedented resolution of variable wave attenuation rates in new, partial ice cover. The location and strength of wave attenuation serve as proxies for ice coverage and thickness, especially during rapidly evolving events.
more »
« less
- Award ID(s):
- 2214651
- PAR ID:
- 10471983
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 20
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This dataset contains processed ocean surface gravity wave parameters derived from interrogation of a seafloor fiber with distributed acoustic sensing (DAS). These measurements were taken on a fiber within a cable owned by Quintillion extending off the coast near Oliktok Point, Alaska in November 2021 and August 2022. Processing includes calculation of frequency-dependent, channel-specific correction factors using collocated wave buoy (SWIFT) observations, which is then multiplied by the PSD of raw strain-rate. A depth-attenuation correction is then also applied. Dataset includes the raw strain-rate spectra and the derived wave spectra, as well as bulk wave parameters including significant wave height (Hs), peak wave period (Tp), and energy-weighted wave period (Te).more » « less
-
Seafloor moorings measuring pressure and temperature were deployed from April to September 2023 at three sites near the route of the fiber optic telecommunications cable that extends offshore of Oliktok Point, Alaska. The raw data data (1 Hertz (Hz) sampling) are processed for hourly estimates of the ocean surface wave conditions, along with average seawater temperature and average depth. The sites were ice-covered from April to July, then mostly open water in August and September. The data were collected to calibrate proxy wave measurements using Distributed Acoustic Sensing (DAS) from the telecommunications cable.more » « less
-
Abstract Distributed acoustic sensing (DAS) is a recently developed technique that has demonstrated its utility in the oil and gas industry. Here we demonstrate the potential of DAS in teleseismic studies using the Goldstone OpticaL Fiber Seismic experiment in Goldstone, California. By analyzing teleseismic waveforms from the 10 January 2018 M7.5 Honduras earthquake recorded on ~5,000 DAS channels and the nearby broadband station GSC, we first compute receiver functions for DAS channels using the vertical‐component GSC velocity as an approximation for the incident source wavelet. The MohoP‐to‐sconversions are clearly visible on DAS receiver functions. We then derive meter‐scale arrival time measurements along the entire 20‐km‐long array. We are also able to measure path‐averaged Rayleigh wave group velocity and local Rayleigh wave phase velocity. The latter, however, has large uncertainties. Our study suggests that DAS will likely play an important role in many fields of passive seismology in the near future.more » « less
-
ABSTRACT Distributed acoustic sensing (DAS) technology is an emerging field of seismic sensing that enables recording ambient noise seismic data along the entire length of a fiber-optic cable at meter-scale resolution. Such a dense spatial resolution of recordings over long distances has not been possible using traditional methods because of limited hardware resources and logistical concerns in an urban environment. The low spatial resolution of traditional passive seismic acquisition techniques has limited the accuracy of the previously generated velocity profiles in many important urban regions, including the Reno-area basin, to the top 100 m of the underlying subsurface. Applying the method of seismic interferometry to ambient noise strain rate data obtained from a dark-fiber cable allows for generating noise cross correlations, which can be used to infer shallow and deep subsurface properties and basin geometry. We gathered DAS ambient noise seismic data for this study using a 12 km portion of a dark-fiber line in Reno, Nevada. We used gathered data to generate and invert dispersion curves to estimate the near-surface shear-wave velocity structure. Comparing the generated velocity profiles with previous regional studies shows good agreement in determining the average depth to bedrock and velocity variations in the analyzed domain. A synthetic experiment is also performed to verify the proposed framework further and better understand the effect of the infrastructural cover along the cable. The results obtained from this research provide insight into the application of DAS using dark-fiber lines in subsurface characterization in urban environments. It also discusses the potential effects of the conduit that covers such permanent fiber installations on the produced inversion results.more » « less
An official website of the United States government
