Abstract Complex oxides offer rich magnetic and electronic behavior intimately tied to the composition and arrangement of cations within the structure. Rare earth iron garnet films exhibit an anisotropy along the growth direction which has long been theorized to originate from the ordering of different cations on the same crystallographic site. Here, we directly demonstrate the three-dimensional ordering of rare earth ions in pulsed laser deposited (EuxTm1-x)3Fe5O12garnet thin films using both atomically-resolved elemental mapping to visualize cation ordering and X-ray diffraction to detect the resulting order superlattice reflection. We quantify the resulting ordering-induced ‘magnetotaxial’ anisotropy as a function of Eu:Tm ratio using transport measurements, showing an overwhelmingly dominant contribution from magnetotaxial anisotropy that reaches 30 kJ m−3for garnets with x = 0.5. Control of cation ordering on inequivalent sites provides a strategy to control matter on the atomic level and to engineer the magnetic properties of complex oxides.
more »
« less
Revealing Site Occupancy in a Complex Oxide: Terbium Iron Garnet
Abstract Complex oxide films stabilized by epitaxial growth can exhibit large populations of point defects which have important effects on their properties. The site occupancy of pulsed laser‐deposited epitaxial terbium iron garnet (TbIG) films with excess terbium (Tb) is analyzed, in which the terbium:iron (Tb:Fe)ratio is 0.86 compared to the stoichiometric value of 0.6. The magnetic properties of the TbIG are sensitive to site occupancy, exhibiting a higher compensation temperature (by 90 K) and a lower Curie temperature (by 40 K) than the bulk Tb3Fe5O12garnet. Data derived from X‐ray core‐level spectroscopy, magnetometry, and molecular field coefficient modeling are consistent with occupancy of the dodecahedral sites by Tb3+, the octahedral sites by Fe3+, Tb3+and vacancies, and the tetrahedral sites by Fe3+and vacancies. Energy dispersive X‐ray spectroscopy in a scanning transmission electron microscope provides direct evidence of TbFeantisites. A small fraction of Fe2+is present, and oxygen vacancies are inferred to be present to maintain charge neutrality. Variation of the site occupancies provides a path to considerable manipulation of the magnetic properties of epitaxial iron garnet films and other complex oxides, which readily accommodate stoichiometries not found in their bulk counterparts.
more »
« less
- PAR ID:
- 10472001
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Small
- Volume:
- 19
- Issue:
- 30
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ferrimagnetic iron garnets enable magnetic and magneto‐optical functionality in silicon photonics and electronics. However, garnets require high‐temperature processing for crystallization which can degrade other devices on the wafer. Here bismuth‐substituted yttrium and terbium iron garnet (Bi‐YIG and Bi‐TbIG) films are demonstrated with good magneto‐optical performance and perpendicular magnetic anisotropy (PMA) crystallized by a microheater built on a Si chip or by rapid thermal annealing. The Bi‐TbIG film crystallizes on Si at 873 K without a seed layer and exhibits good magneto‐optical properties with Faraday rotation (FR) of −1700 deg cm−1. The Bi‐YIG film also crystallizes on Si and fused SiO2at 873 K without a seed layer. Rapidly cooled films exhibit PMA due to the tensile stress caused by the thermal expansion mismatch with the substrates, increasing the magnetoelastic anisotropy by 4 kJ m−3versus slow‐cooled films. Annealing in the air for 15 s using the microheater yields fully crystallized Bi‐TbIG on the Si chip.more » « less
-
Abstract Iron garnets that combine robust perpendicular magnetic anisotropy (PMA) with low Gilbert damping are desirable for studies of magnetization dynamics as well as spintronic device development. This paper reports the magnetic properties of low‐damping bismuth‐substituted iron garnet thin films (Bi0.8Y2.2Fe5O12) grown on a series of single‐crystal gallium garnet substrates. The anisotropy is dominated by magnetoelastic and growth‐induced contributions. Both stripe and triangular domains form during field cycling of PMA films, with triangular domains evident in films with higher PMA. Ferromagnetic resonance measurements show damping as low as 1.3 × 10−4with linewidths of 2.7 to 5.0 mT. The lower bound for the spin‐mixing conductance of BiYIG/Pt bilayers is similar to that of other iron garnet/Pt bilayers.more » « less
-
Abstract Conducting real‐time, element‐specific studies of photo‐excited systems is a long‐standing challenge. The development of X‐ray free‐electron lasers (XFELs) has paved the way for the emergence of a promising technique: femtosecond X‐ray absorption spectroscopy (fs‐XAS). This powerful technique reveals electronic and geometric characteristics, providing unprecedented insight into their dynamic interactions under nonequilibrium conditions. Herein, the fs‐XAS technique is employed at PAL‐XFEL to unravel light‐driven ultrafast electronic and structural changes in epitaxial lanthanum iron oxide (LaFeO3) thin films. Density functional theory (DFT) and multiplet calculations are utilized to expound on the experimental results. The analyses reveal that photoexcitation initially induces high‐ and intermediate‐spin Fe2+states through ligand‐to‐metal charge transfer (LMCT), followed by polaron formation. It is demonstrated that the reduced overlap between the oxygen 2pand iron 3dorbitals accounts for all experimental observations, including 1) the XAS shifts to lower energies, 2) the decrease in the crystal field splitting, and 3) the relatively larger shifts observed in the oxygen 1sXAS.more » « less
-
Cerium-doped terbium iron garnet (CeTbIG) thin films with varying compositions and thicknesses were deposited to determine a garnet formation region. Both grain size and Faraday rotation (FR) increased in this region as the Ce content increased until 20% of the dodecahedral sites were occupied by Ce. The high Ce content was achieved by lowering the Fe ratio with respect to the total rare earth content. Above 20% Ce, the Faraday rotation was relatively independent of composition at -830o/cm, which is similar in magnitude to positive Faraday rotation garnets, e.g.: + 600o/cm for undoped TbIG. Next, we found that a two-step annealing method, involving a 400°C pre-anneal followed by higher temperatures, effectively reduced the maximum temperature from 900°C to 800°C without decreasing the Faraday rotation. Finally, a Si-integrated interferometer was simulated using the stable (+) and (-) Faraday rotation materials developed in this work. The simulation identified a Si-integrated Mach Zehnder Interferometers (MZI) with “push/pull” nonreciprocal phase shifts (NRPS) of opposite signs that enable mm-scale with zero external magnetic field (field-free).more » « less
An official website of the United States government

