Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract In our previous article (http://arxiv.org/abs/1607.06041), we established an equivalence between pointed pivotal module tensor categories and anchored planar algebras. This article introduces the notion of unitarity for both module tensor categories and anchored planar algebras, and establishes the unitary analog of the above equivalence. Our constructions use Baez’s 2-Hilbert spaces (i.e., semisimple$$\textrm{C}^*$$ -categories equipped with unitary traces), the unitary Yoneda embedding, and the notion of unitary adjunction for dagger functors between 2-Hilbert spaces.more » « less
- 
            A<sc>bstract</sc> Levin-Wen string-net models provide a construction of (2+1)D topologically ordered phases of matter with anyonic localized excitations described by the Drinfeld center of a unitary fusion category. Anyon condensation is a mechanism for phase transitions between (2+1)D topologically ordered phases. We construct an extension of Levin-Wen models in which tuning a parameter implements anyon condensation. We also describe the classification of anyons in Levin-Wen models via representation theory of the tube algebra, and use a variant of the tube algebra to classify low-energy localized excitations in the condensed phase.more » « less
- 
            Braided-enriched monoidal categories were introduced in the work of Morrison–Penneys, where they were characterized using braided central functors. The recent work of Kong–Yuan–Zhang–Zheng and Dell extended this characterization to an equivalence of 2-categories. Since their introduction, braided-enriched fusion categories have been used to describe certain phenomena in topologically ordered systems in theoretical condensed matter physics. While these systems are unitary, there was previously no general notion of unitarity for enriched categories in the literature. We supply the notion of unitarity for enriched categories and braided-enriched monoidal categories and extend the above 2-equivalence to the unitary setting.more » « less
- 
            The recent article by Jones et al. [arXiv:2307.12552 (2023)] gave local topological order (LTO) axioms for a quantum spin system, showed they held in Kitaev’s Toric Code and in Levin-Wen string net models, and gave a bulk boundary correspondence to describe bulk excitations in terms of the boundary net of algebras. In this article, we prove the LTO axioms for Kitaev’s Quantum Double model for a finite group G. We identify the boundary nets of algebras with fusion categorical nets associated to (Hilb(G),C[G]) or (Rep(G),CG) depending on whether the boundary cut is rough or smooth, respectively. This allows us to make connections to the work of Ogata [Ann. Henri Poincaré 25, 2353–2387 (2024)] on the type of the cone von Neumann algebras in the algebraic quantum field theory approach to topological superselection sectors. We show that the boundary algebras can also be calculated from a trivial G-symmetry protected topological phase (G-SPT), and that the gauging map preserves the boundary algebras. Finally, we compute the boundary algebras for the (3 + 1)D Quantum Double model associated to an Abelian group.more » « less
- 
            Boundaries of Walker-Wang models have been used to construct commuting projector models which realize chiral unitary modular tensor categories (UMTCs) as boundary excitations. Given a UMTC representing the Witt class of an anomaly, the article \cite{MR4640433} gave a commuting projector model associated to an -enriched unitary fusion category on a 2D boundary of the 3D Walker-Wang model associated to . That article claimed that the boundary excitations were given by the enriched center/Müger centralizer of in .In this article, we give a rigorous treatment of this 2D boundary model, and we verify this assertion using topological quantum field theory (TQFT) techniques, including skein modules and a certain semisimple algebra whose representation category describes boundary excitations. We also use TQFT techniques to show the 3D bulk point excitations of the Walker-Wang bulk are given by the Müger center , and we construct bulk-to-boundary hopping operators reflecting how the UMTC of boundary excitations is symmetric-braided enriched in .This article also includes a self-contained comprehensive review of the Levin-Wen string net model from a unitary tensor category viewpoint, as opposed to the skeletal symbol viewpoint.more » « less
- 
            Topologically ordered quantum spin systems have become an area of great interest, as they may provide a fault-tolerant means of quantum computation. One of the simplest examples of such a spin system is Kitaev’s toric code. Naaijkens made mathematically rigorous the treatment of toric code on an infinite planar lattice (the thermodynamic limit), using an operator algebraic approach via algebraic quantum field theory. We adapt his methods to study the case of toric code with gapped boundary. In particular, we recover the condensation results described in Kitaev and Kong and show that the boundary theory is a module tensor category over the bulk, as expected.more » « less
- 
            Subfactor standard invariants encode quantum symmetries. The small index subfactor classification program has been a rich source of interesting quantum symmetries. We give the complete classification of subfactor standard invariants to index , which includes , the first interesting composite index.more » « less
- 
            We generalize Jones’ planar algebras by internalising the notion to a pivotal braided tensor category . To formulate the notion, the planar tangles are now equipped with additional ‘anchor lines’ which connect the inner circles to the outer circle. We call the resulting notion ananchored planar algebra. If we restrict to the case when is the category of vector spaces, then we recover the usual notion of a planar algebra. Building on our previous work on categorified traces, we prove that there is an equivalence of categories between anchored planar algebras in and pivotal module tensor categories over equipped with a chosen self-dual generator. Even in the case of usual planar algebras, the precise formulation of this theorem, as an equivalence of categories, has not appeared in the literature. Using our theorem, we describe many examples of anchored planar algebras.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
