skip to main content


This content will become publicly available on November 1, 2024

Title: Adoption of Pedagogical Innovations: Social Networks of Engineering Education Guilds

This work investigates how innovations propagate through two professional networks (guilds): the Kern Entrepreneurial Engineering Network (KEEN) and the Consortium to Promote Reflection in Engineering Education (CPREE). Previous research has demonstrated that the adoption of pedagogical innovations is supported by the socialization of the innovation among potential adopters. In this work, we use social network analysis to explore the impact of professional connections on innovation adoption. Our research questions are: (1) How does overall social structure differ between guilds? (2) How do measures of social network structures relate to innovation adoption? A survey was distributed to members of KEEN and CPREE to capture the interactions respondents had while adopting the guild’s innovation. Social networks were generated for each guild and each respondent. These networks were analyzed to identify relationships between social network measures and the frequency of use of the innovation. Responses to open-ended questions were analyzed using thematic coding. The guilds’ overall structures impacted the formation and structure of distinct clusters/cliques, but these differing structures did not appear to affect sustained adoption. Individuals’ ego networks demonstrated a weak negative correlation between the frequency of adoption and the individual’s ego network density. Our results imply that having a diverse network exposes instructors to more ideas or allows them to see one idea from many perspectives.

 
more » « less
Award ID(s):
1927268
NSF-PAR ID:
10472249
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Education Sciences
Date Published:
Journal Name:
Education Sciences
Volume:
13
Issue:
11
ISSN:
2227-7102
Page Range / eLocation ID:
1102
Subject(s) / Keyword(s):
["instructional change","educational change","social networks","pedagogical innovations","change agents"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering education guilds, such as the Consortium to Promote Reflection in Engineering Education (CPREE) and the Kern Entrepreneurial Engineering Network (KEEN), seek to work at the forefront of educational innovation by creating networks of instructor change agents who design and implement a particular innovation in their own context to further the professional formation of engineers (PFE). While many of the innovations facilitated by CPREE and KEEN have been published extensively, it is unclear how successful the propagation of reflection and entrepreneurial mindset has been in the engineering education community. The major aim of this project is to characterize these two engineering education guilds with respect to their dissemination/propagation plans and, in the future, quantify the propagation of the innovations championed by CPREE and KEEN. The research questions we seek to answer in this paper are: (1) What are the planned dissemination/propagation approaches of well-established engineering education guilds? and (2) To what extent do their characteristics align with the Designing for Sustained Adoption Assessment Instrument (DSAAI)? The DSAAI was developed in 2016 to provide education developers, grant writing consultants, and funding agencies with a tool for assessing the propagation plans of researchers developing educational change strategies. To answer these questions, we conducted semi-structured interviews with the leaders of CPREE and KEEN. The transcriptions of the interviews will be used to create within-case reports for each guild. The within-case reports will consist of a rich description of the pedagogical innovation as well as the history of the guild and its goals. Using the DSAAI, we will qualitatively code the techniques that each guild is using to facilitate widespread adoption as well as the extent to which they are following a dissemination or propagation paradigm. Lastly, thematic analysis will be used to capture emerging themes that arise from the interviews. 
    more » « less
  2. Background: The National Science Foundation (NSF) and other organizations have spent millions of dollars each year supporting well-designed educational innovations that positively impact the undergraduate engineering students who encounter them. However, many of these pedagogical innovations never experience widespread adoption. To further the ability of innovation developers to advance engineering education practice and achieve sustained adoption of their innovations, this paper explores how one community-based model, engineering education guilds, fosters propagation across institutions and individuals. Engineering education guilds seek to work at the forefront of educational innovation by creating networks of instructor change-agents who design and implement a particular innovation in their own context. The guilds of interest are the Consortium to Promote Reflection in Engineering Education (CPREE) and the Kern Entrepreneurial Engineering Network (KEEN). With these guilds as exemplars, this study’s purpose is (1) to articulate how the approaches of engineering education guilds align with existing literature on supporting sustained adoption of educational innovations and (2) to identify how these approaches can advance the science, technology, engineering and math (STEM) education community’s discussion of propagation practices through the use of the Designing for Sustained Adoption Assessment Instrument (DSAAI). The DSAAI is a conceptual framework based on research in sustained adoption of pedagogical innovations. It has previously been used in the form of a rubric to analyze dissemination and propagation plans of NSF educational grant recipients and was shown to predict the effectiveness of those propagation plans. Results: Through semi-structured interviews with two leaders from each guild, we observed strong alignment between the structures of CRPEE and KEEN and evidence-based sustained adoption characteristics. For example, both guilds identified their intended audience early in their formation, developed and implemented extensive plans for engaging and supporting potential adopters, and accounted for the complexity of the higher education landscape and their innovations in their propagation plans. Conclusions: Our results suggest that guilds could provide another approach to innovation, as their structures can be aligned with evidence-based methods for propagating pedagogical innovations. Additionally, while the DSAAI captures many of the characteristics of a welld-esigned propagation strategy, there are additional components that emerged as successful strategies used by the CPREE and KEEN guild leaders. These strategies, including having mutual accountability among adopters and connecting adoption of innovations to faculty reward structures in the form of recognition and funding should be considered as educational innovators work to encourage adoption of their innovations. 
    more » « less
  3. null (Ed.)
    This Full Research paper uses resource network analysis to explore what resources faculty use when they make changes to their pedagogy, and how an engineering education “guild” is situated among those resources. The process of influencing pedagogical change can be understood as lying along a spectrum. On one end of the spectrum is the dissemination model, where research is simply made available and instructors are expected to seek out new tools. On the other end is the propagation model, where researchers, developers, and instructors work as one cohesive team to get innovative tools into classrooms. While each of these models and the instructor resources associated with them have been separately studied and defined, approaches on the spectrum between them remain understudied. Engineering education guilds employ an approach that falls along the dissemination-propagation spectrum; they use both dissemination and propagation techniques to influence pedagogical changes. Despite lack of formal research on the subject, engineering education “guilds” have become an increasinglypopular vehicle for pedagogical change in engineering education classrooms. One such engineering education guild is the Kern Entrepreneurial Engineering Network (KEEN), which is focused on integrating entrepreneurial mindset (EM) into engineering curricula. By constructing resource networks for educators who have been exposed to KEEN, we aim to understand the role of KEEN among the myriad resources used by engineering educators when they integrate EM-related content into their classrooms. Results suggest that engineering education guilds are central to the resource networks of faculty looking to innovate their pedagogy, with the most popular resources all falling under the guild’s umbrella. These resources are also strongly interconnected, especially during the integration process. However, the resources networks of those who saw successful, complete, sustained adoption reached beyond the guild’s umbrella, forging connections with a variety of other materials from different sources. 
    more » « less
  4. The purpose of this NSF CAREER project is to explore the participation of LGBTQ students in STEM fields. LGBTQ students leave engineering and other STEM majors and careers at higher rates than their heterosexual, cisgender peers, and the climate within these fields is a contributing factor to this difference in attrition. In order to develop a diverse engineering workforce and adequately prepare the next generation of engineers and other STEM professionals, engineering educators and departments must address inequities such as these to ensure broad participation. This purpose of this poster is to highlight progress toward meeting the first research aim of the overall project, to examine the social networks and related STEM outcomes of LGBTQ students. The project comprises three primary research aims, which also include future work comparing STEM degree completion rates between LGBTQ students and their cisgender, heterosexual peers, and exploring the intersection of STEM discipline-based identity (e.g., engineering identity, science identity) with sexual and gender identity. This project stands to improve our understanding of how to broaden participation in engineering and other STEM fields by pursuing robust research efforts that illuminate the ways sexual and gender identity shape trajectories into, through, and out of STEM. Over the past year of the project, we have accomplished developing and administering a survey to college students nationally. We administered the survey at two universities in Spring 2022 followed by a third in Fall 2022, and administration will conclude at two more in Spring 2023.The survey itself uses an egocentric social network analysis approach to gather data on the characteristics of a subset of students’ social networks, measures of several affective outcomes known to lead to academic persistence, and data on students’ college experiences and personal demographics. For this poster, we present our work testing how well the outcome measures performed in the survey instrument. Overall, our dataset as collected to date includes 404 students who completed the survey. Of these students, over half were women (58.2%), about a quarter were men (28.1%), and 8.9% were nonbinary, genderqueer, or gender nonconforming. In terms of sexual identity, 38.8% of were heterosexual, 30.1% were bisexual or pansexual, 14.4% were gay or lesbian, and 6.5% were asexual. Our survey measured three affective outcomes: sense of belonging in one’s major, commitment to one’s major, and science and engineering identity. Reliability testing and factor analysis demonstrated that our data performed well in replicating the factor structure of our measures, and content validity testing demonstrated these measures related as expected with other variables in the dataset. 
    more » « less
  5. The purpose of this research paper is to understand how diverse students are incorporated into the social structure of a large enrollment first-year engineering design course. Despite previous work demonstrating the benefits of diverse individuals in engineering, little work has examined how diverse students are incorporated into the social networks that exist within engineering classrooms. Social interactions are one of the most influential sources for integration into communities of practice. Through understanding how students interact and the structure of these interactions, we can elucidate how the engineering community includes members of underrepresented populations. Previous social network analysis (SNA) studies have scrutinized student classroom interactions. These studies typically attempt to link classroom interactions to academic outcomes (i.e., grades). In this study, we start to shift the focus away from connecting student interactions to academic outcomes and examine how the structure of student interactions can encourage an inclusive environment in a formal engineering environment. SNA data was collected via an online survey (n = 502, 74% response rate) one month into the semester at a Western land-grant institution. The survey asked first-year engineering students to indicate with whom they had interacted using a pre-populated list of the class roster and open-ended questions. The number of students that were mentioned by a participant (out-degree) is interpreted as a proxy of their sociableness. Whereas, the number of times a student was mentioned by others (in-degree) is interpreted as popularity. We posit that in an inclusive network structure the social behaviors (i.e., in and out-degree) will be independent of students’ demographic characteristics (e.g., race and gender). Nonparametric hypothesis testing (i.e., Kruskal-Wallis and Dunn’s test) was used to investigate the effects of gender and race on both in and out-degree. Results indicate that the social structure of the first-year engineering community is inclusive of both gender and race. Specifically, results indicated no significant differences for in-degree based on measures of race and gender, for students who provided race and gender information. Out-degree was not significantly different based on race. However, women did demonstrate significantly higher out-degree scores (i.e., greater sociableness) than their peers. Building on previous SNA literature, the increased connections expressed by women may lead to increased learning gains or performance within engineering. Results indicated that the social structure of this first-year engineering course, as indicated by in-degree and out-degree, is not significantly different for underrepresented groups. This result begins to illustrate a more complex story than the existing literature has documented of engineering as an unwelcoming environment for underrepresented students. Future work will explore how these structures do or do not persist over time and how individuals develop attitudes towards diverse individuals as a result of these interactions. We hope that the results of this work will provide practical ways to improve engineering climate for underrepresented students. 
    more » « less