skip to main content


This content will become publicly available on June 25, 2024

Title: CAREER: Testing the Performance of Outcome Measures for LGBTQ STEM Students and their Peers
The purpose of this NSF CAREER project is to explore the participation of LGBTQ students in STEM fields. LGBTQ students leave engineering and other STEM majors and careers at higher rates than their heterosexual, cisgender peers, and the climate within these fields is a contributing factor to this difference in attrition. In order to develop a diverse engineering workforce and adequately prepare the next generation of engineers and other STEM professionals, engineering educators and departments must address inequities such as these to ensure broad participation. This purpose of this poster is to highlight progress toward meeting the first research aim of the overall project, to examine the social networks and related STEM outcomes of LGBTQ students. The project comprises three primary research aims, which also include future work comparing STEM degree completion rates between LGBTQ students and their cisgender, heterosexual peers, and exploring the intersection of STEM discipline-based identity (e.g., engineering identity, science identity) with sexual and gender identity. This project stands to improve our understanding of how to broaden participation in engineering and other STEM fields by pursuing robust research efforts that illuminate the ways sexual and gender identity shape trajectories into, through, and out of STEM. Over the past year of the project, we have accomplished developing and administering a survey to college students nationally. We administered the survey at two universities in Spring 2022 followed by a third in Fall 2022, and administration will conclude at two more in Spring 2023.The survey itself uses an egocentric social network analysis approach to gather data on the characteristics of a subset of students’ social networks, measures of several affective outcomes known to lead to academic persistence, and data on students’ college experiences and personal demographics. For this poster, we present our work testing how well the outcome measures performed in the survey instrument. Overall, our dataset as collected to date includes 404 students who completed the survey. Of these students, over half were women (58.2%), about a quarter were men (28.1%), and 8.9% were nonbinary, genderqueer, or gender nonconforming. In terms of sexual identity, 38.8% of were heterosexual, 30.1% were bisexual or pansexual, 14.4% were gay or lesbian, and 6.5% were asexual. Our survey measured three affective outcomes: sense of belonging in one’s major, commitment to one’s major, and science and engineering identity. Reliability testing and factor analysis demonstrated that our data performed well in replicating the factor structure of our measures, and content validity testing demonstrated these measures related as expected with other variables in the dataset.  more » « less
Award ID(s):
2046233
NSF-PAR ID:
10484435
Author(s) / Creator(s):
;
Publisher / Repository:
American Society for Engineering Education
Date Published:
Journal Name:
Proceedings of the 2023 ASEE National Conference and Exhibition
Format(s):
Medium: X
Location:
Baltimore, MD
Sponsoring Org:
National Science Foundation
More Like this
  1. Research shows that the LGBTQ climate in engineering, and other STEM, undergraduate degree programs is rife with heteronormativity and cissexism, leading LGBTQ students to leave STEM majors and careers at higher rates than their heterosexual, cisgender peers. In order to develop a diverse STEM workforce and adequately prepare the next generation of professionals in STEM, higher education, and especially engineering education, must address inequities such as these to ensure broad participation in STEM fields. This NSF CAREER-funded project helps meet this need by examining the participation of LGBTQ students in STEM fields. The project focuses on three primary research aims to address this purpose: test the relationships between the composition of LGBTQ students’ social networks and non-cognitive STEM outcomes, compare STEM degree completion rates between LGBTQ students and their cisgender, heterosexual peers, and explore the intersection of STEM discipline-based identity (e.g., engineering identity, science identity) with sexual and gender identity. This project stands to improve our understanding of how to broaden participation in STEM by pursuing robust research efforts that illuminate the ways sexual and gender identity shape trajectories into, through, and out of STEM. The purpose of this poster is to present preliminary outcomes from the first research aim of the project, which is to test the relationship between composition of students’ social networks and non-cognitive outcomes, and compare these relationships by sexual and gender identities. We hypothesize that homophily within students’ social networks, especially for heterosexual and cisgender students, will predict greater levels of identification with one’s STEM discipline, sense of belonging in STEM, and commitment to a STEM major. LGBTQ students whose LGBTQ connections are primarily outside STEM are hypothesized to feel more of a pull away from STEM. This poster focuses on the social network analysis phase of the project, including instrument development, data collection procedures, and preliminary analysis of the data. Data collection will commence in the spring 2022 semester. Social network analysis (SNA) is a method that measures and represents the patterns and information of contextually bound structural relationships to explain why the relationships occur and the outcomes of their existence, and SNA is only recently gaining ground in educational research. We developed a survey that incorporates generating an ego-centric social network, or the people an individual relies on most for support, with existing measures for sense of belonging, discipline-based identity, and commitment to field of study, adapted for this study’s purpose. The survey validation procedure included cognitive interviews with undergraduate students and expert reviews by engineering education and institutional research experts. Data collection will occur at five colleges and universities nation-wide, representing a range of institutional types, geographical diversity, and student body diversity. The poster will detail the theory and procedures that constitute SNA research, the survey development process for this phase of the project, and preliminary results from analysis of the data. 
    more » « less
  2. This theoretical paper proposes a framework to understand LGBTQ participation in STEM that reveals how heterosexism and cissexism operate in engineering. We propose a framework that connects the low representation of LGBTQ students in engineering to experiences of inauthenticity that threatens their participation in engineering and motivation to persist in their studies. LGBTQ students’ social networks in engineering are composed predominantly of people of different sexual and gender identities than them, whereas cisgender, heterosexual students have access to networks composed of peers who nearly entirely share these identities with them. A concept from social network theory, homophily describes how much one's social network is composed of people who are like oneself. Homophilous networks validate personal experiences and identities in ways that we anticipate foster a greater sense of authenticity within those environments. Schmader and Sedikides posit within their State Authenticity as Fit to Environment model that authenticity is an essential human need induced in environments that are congruent with one’s sense of identity. Experiencing state authenticity increases motivation and engagement within that environment; experiencing inauthenticity does the opposite. Heterosexual, cisgender students experience authenticity within engineering with little question, whereas LGBTQ students are more likely to experience inauthenticity which interferes with their participation in engineering fields. Attention to state in/authenticity as a critical aspect of engineering learning environments may help shift these demotivating and disengaging environments for minoritized students like LGBTQ students who wish to pursue these fields of study. To better understand LGBTQ participation in engineering social network analysis could help unpack the relationship between the composition of engineering students’ social networks, their experiences of in/authenticity, and different educational and vocational outcomes in engineering. This may also offer insight into how students organize their networks into environments where they are more likely to experience state authenticity. Implications for practice include helping LGBTQ students find community in engineering and other STEM fields through organizations like Out to Innovate and oSTEM. 
    more » « less
  3. The purpose of this research paper is to test the difference in likelihood that LGBTQ students are open about their sexual or gender identities to peers in STEM than other members of their networks. LGBTQ students face pressures in STEM to hide their sexual and gender identities, which threatens their ability to experience state authenticity within STEM, or a congruence between their social identities and the environment. Incongruence would lead LGBTQ students to leave STEM majors at higher rates which undermines efforts to broaden participation in engineering. We used egocentric social network analysis to test differences in the likelihood that LGBTQ students are “out” to different members of their networks. We hypothesized that LGBTQ students are less likely to be out to peers in STEM than other members of their networks because of the culture and climate within STEM. Experiencing continued incongruence between one’s social identity and one’s environment, more common for minoritized individuals than others, can become a barrier to continued participation within that environment. Outness therefore serves as an indicator of how comfortable LGBTQ students are in STEM as an early predictor of whether they will persist in STEM. Results indicate participants were less likely to be out to peers in STEM than other peers. When we took whether the participant was a STEM major into consideration, the picture became less clear. Among STEM majors, participants reported being less likely to be out to their peers in STEM than other network members, but none of these factors were significant in a full-factor, mixed-effects regression model. These results suggest some degree of inauthenticity experienced by LGBTQ people with their peers in STEM, though the situation may be improving. These results implicate the role of climate in STEM through LGBTQ students’ relationships with their peers. If they feel they must be less open about their sexual or gender identities with peers in STEM, LGBTQ students are likely not experiencing a level of state authenticity within STEM that would retain them within these fields. Educators should consider how academic environments are construed to provide a supportive climate that allows LGBTQ students to be open and that sets expectations for all students to respect and welcome the contributions of their LGBTQ peers. 
    more » « less
  4. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering. 
    more » « less
  5. Traditionally, engineering culture has limited rather than fostered diversity in engineering. To address this persistent issue, we examine how diverse students identify with engineering and navigate the culture of engineering. We define diversity not by making a priori categorizations according to traditional demographic information (e.g., race, gender, sexual orientation, etc.), but instead by investigating the variation in students’ attitudinal profiles on a host of affective measures. Using these measures, we develop an identification of large, “normative” groups of engineers as well as “non-normative” students who emerge as having distinct attitudinal profiles. This mixed methods study investigates the intersectionality of engineering students' personal identities to understand: How do non-normative groups in engineering form an engineering identity and navigate a culture dominated by limited diversity? The focus of this paper is on the first phase this project, in which students' identities, motivation, psychological traits, perceived supports and barriers to engineering, and other background information is being quantitatively assessed. Pilot survey data were collected from participants enrolled in second semester first-year engineering programs across three institutions (n=374). We used topological data analysis (TDA) to create normative and non-normative attitudinal profiles of respondents. As a relatively new and powerful set of analytic methods, TDA clusters variegated data to understand an underlying structure, or topology, which emerges from the data. Our preliminary results show definite patterns which we then break down according to students' self-identified demographics. Additionally, a subset of participants who completed our quantitative instrument were interviewed about their experiences in and identification with engineering (n=7). Initial qualitative data analysis indicate that students who reside at intersectional boundaries of diversity have difficulty finding similar role models in engineering and often find themselves expending additional effort when compared to their peers to establish themselves in both engineering and non-engineering communities. Results of this quantitative and qualitative work were used to further refine the quantitative instrument that is to be used in subsequent phases of the project. 
    more » « less