skip to main content


Title: InGaAs Membrane Waveguide: A Promising Platform for Monolithic Integrated Mid-Infrared Optical Gas Sensor
Mid-infrared (mid-IR) absorption spectroscopy based on integrated photonic circuits has shown great promise in trace-gas sensing applications in which the mid-IR radiation directly interacts with the targeted analyte. In this paper, considering monolithic integrated circuits with quantum cascade lasers (QCLs) and quantum cascade detectors (QCDs), the InGaAs−InP platform is chosen to fabricate passive waveguide gas sensing devices. Fully suspended InGaAs waveguide devices with holey photonic crystal waveguides (HPCWs) and subwavelength grating cladding waveguides (SWWs) are designed and fabricated for mid-infrared sensing at λ = 6.15 μm in the low-index contrast InGaAs−InP platform. We experimentally detect 5 ppm ammonia with a 1 mm long suspended HPCW and separately with a 3 mm long suspended SWW, with propagation losses of 39.1 and 4.1 dB/cm, respectively. Furthermore, based on the Beer−Lambert infrared absorption law and the experimental results of discrete components, we estimated the minimum detectable gas concentration of 84 ppb from a QCL/QCD integrated SWW sensor. To the best of our knowledge, this is the first demonstration of suspended InGaAs membrane waveguides in the InGaAs−InP platform at such a long wavelength with gas sensing results. Also, this result emphasizes the advantage of SWWs to reduce the total transmission loss and the size of the fully integrated device’s footprint by virtue of its low propagation loss and TM mode compatibility in comparison to HPCWs. This study enables the possibility of monolithic integration of quantum cascade devices with TM polarized characteristics and passive waveguide sensing devices for on-chip mid-IR absorption spectroscopy.  more » « less
Award ID(s):
1932753
NSF-PAR ID:
10180157
Author(s) / Creator(s):
Date Published:
Journal Name:
ACS sensors
Volume:
5
ISSN:
2379-3694
Page Range / eLocation ID:
861-869
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mid-infrared trace gas sensing is a rapidly developing field with wide range of applications. Although CRDS, TDLAS, FTIR and others, can provide parts per billion and in some cases, parts per trillion sensitivities, these systems require bulky and expensive optical elements and, furthermore, are very sensitive to beam alignment and have significant size and weight that place constrains on their applications in the field, particularly for airborne or handheld platforms. Monolithic integration of light sources and detectors with an optically transparent passive photonics platform is required to enable a compact trace gas sensing system that is robust to vibrations and physical stress. Since the most efficient quantum cascade lasers (QCLs) demonstrated are in the InP platform, the choice of InGaAs-InP for passive photonics eliminates the need for costly wafer bonding versus silicon, germanium of GaAs, that would require optically absorbing bonding interfaces. The InGaAs-InP material platform can potentially cover the entire λ=3-15μm molecular fingerprint region. In this paper, we experimentally demonstrate monolithic integration of QCL, quantum cascade detector (QCD) and suspended membrane sub-wavelength waveguides in a fully monolithic InGaAs/InP material system. The transverse magnetic polarized QCL emission is efficiently coupled into an underlying InGaAs suspended membrane subwavelength waveguide. In addition to low-loss compact waveguide bends, the suspended membrane architecture offers a high analyte overlap integral with the analyte. The propagating light is absorbed at the peak absorbance wavelength of the selected analyte gas and the transduced signal is detected by the integrated QCD. Gas sensing will be demonstrated 
    more » « less
  2. Chemicals are best recognized by their unique wavelength specific optical absorption signatures in the molecular fingerprint region from λ=3-15μm. In recent years, photonic devices on chips are increasingly being used for chemical and biological sensing. Silicon has been the material of choice of the photonics industry over the last decade due to its easy integration with silicon electronics as well as its optical transparency in the near-infrared telecom wavelengths. Silicon is optically transparent from 1.1 μm to 8 μm with research from several groups in the mid-IR. However, intrinsic material losses in silicon exceed 2dB/cm after λ~7μm (~0.25dB/cm at λ=6μm). In addition to the waveguiding core, an appropriate transparent cladding is also required. Available core-cladding choices such as Ge-GaAs, GaAs-AlGaAs, InGaAs-InP would need suspended membrane photonic crystal waveguide geometries. However, since the most efficient QCLs demonstrated are in the InP platform, the choice of InGaAs-InP eliminates need for wafer bonding versus other choices. The InGaAs-InP material platform can also potentially cover the entire molecular fingerprint region from λ=3-15μm. At long wavelengths, in monolithic architectures integrating lasers, detectors and passive sensor photonic components without wafer bonding, compact passive photonic integrated circuit (PIC) components are desirable to reduce expensive epi material loss in passive PIC etched areas. In this paper, we consider miniaturization of waveguide bends and polarization rotators. We experimentally demonstrate suspended membrane subwavelength waveguide bends with compact sub-50μm bend radius and compact sub-300μm long polarization rotators in the InGaAs/InP material system. Measurements are centered at λ=6.15μm for sensing ammonia 
    more » « less
  3. Abstract

    Thanks to the unique molecular fingerprints in the mid-infrared spectral region, absorption spectroscopy in this regime has attracted widespread attention in recent years. Contrary to commercially available infrared spectrometers, which are limited by being bulky and cost-intensive, laboratory-on-chip infrared spectrometers can offer sensor advancements including raw sensing performance in addition to utilization such as enhanced portability. Several platforms have been proposed in the past for on-chip ethanol detection. However, selective sensing with high sensitivity at room temperature has remained a challenge. Here, we experimentally demonstrate an on-chip ethyl alcohol sensor based on a holey photonic crystal waveguide on silicon on insulator-based photonics sensing platform offering an enhanced photoabsorption thus improving sensitivity. This is achieved by designing and engineering an optical slow-light mode with a high group-index ofng = 73 and a strong localization of the modal power in analyte, enabled by the photonic crystal waveguide structure. This approach includes a codesign paradigm that uniquely features an increased effective path length traversed by the guided wave through the to-be-sensed gas analyte. This PIC-based lab-on-chip sensor is exemplary, spectrally designed to operate at the center wavelength of 3.4 μm to match the peak absorbance for ethanol. However, the slow-light enhancement concept is universal offering to cover a wide design-window and spectral ranges towards sensing a plurality of gas species. Using the holey photonic crystal waveguide, we demonstrate the capability of achieving parts per billion levels of gas detection precision. High sensitivity combined with tailorable spectral range along with a compact form-factor enables a new class of portable photonic sensor platforms when integrated with quantum cascade laser and detectors.

     
    more » « less
  4. BACKGROUND Electromagnetic (EM) waves underpin modern society in profound ways. They are used to carry information, enabling broadcast radio and television, mobile telecommunications, and ubiquitous access to data networks through Wi-Fi and form the backbone of our modern broadband internet through optical fibers. In fundamental physics, EM waves serve as an invaluable tool to probe objects from cosmic to atomic scales. For example, the Laser Interferometer Gravitational-Wave Observatory and atomic clocks, which are some of the most precise human-made instruments in the world, rely on EM waves to reach unprecedented accuracies. This has motivated decades of research to develop coherent EM sources over broad spectral ranges with impressive results: Frequencies in the range of tens of gigahertz (radio and microwave regimes) can readily be generated by electronic oscillators. Resonant tunneling diodes enable the generation of millimeter (mm) and terahertz (THz) waves, which span from tens of gigahertz to a few terahertz. At even higher frequencies, up to the petahertz level, which are usually defined as optical frequencies, coherent waves can be generated by solid-state and gas lasers. However, these approaches often suffer from narrow spectral bandwidths, because they usually rely on well-defined energy states of specific materials, which results in a rather limited spectral coverage. To overcome this limitation, nonlinear frequency-mixing strategies have been developed. These approaches shift the complexity from the EM source to nonresonant-based material effects. Particularly in the optical regime, a wealth of materials exist that support effects that are suitable for frequency mixing. Over the past two decades, the idea of manipulating these materials to form guiding structures (waveguides) has provided improvements in efficiency, miniaturization, and production scale and cost and has been widely implemented for diverse applications. ADVANCES Lithium niobate, a crystal that was first grown in 1949, is a particularly attractive photonic material for frequency mixing because of its favorable material properties. Bulk lithium niobate crystals and weakly confining waveguides have been used for decades for accessing different parts of the EM spectrum, from gigahertz to petahertz frequencies. Now, this material is experiencing renewed interest owing to the commercial availability of thin-film lithium niobate (TFLN). This integrated photonic material platform enables tight mode confinement, which results in frequency-mixing efficiency improvements by orders of magnitude while at the same time offering additional degrees of freedom for engineering the optical properties by using approaches such as dispersion engineering. Importantly, the large refractive index contrast of TFLN enables, for the first time, the realization of lithium niobate–based photonic integrated circuits on a wafer scale. OUTLOOK The broad spectral coverage, ultralow power requirements, and flexibilities of lithium niobate photonics in EM wave generation provides a large toolset to explore new device functionalities. Furthermore, the adoption of lithium niobate–integrated photonics in foundries is a promising approach to miniaturize essential bench-top optical systems using wafer scale production. Heterogeneous integration of active materials with lithium niobate has the potential to create integrated photonic circuits with rich functionalities. Applications such as high-speed communications, scalable quantum computing, artificial intelligence and neuromorphic computing, and compact optical clocks for satellites and precision sensing are expected to particularly benefit from these advances and provide a wealth of opportunities for commercial exploration. Also, bulk crystals and weakly confining waveguides in lithium niobate are expected to keep playing a crucial role in the near future because of their advantages in high-power and loss-sensitive quantum optics applications. As such, lithium niobate photonics holds great promise for unlocking the EM spectrum and reshaping information technologies for our society in the future. Lithium niobate spectral coverage. The EM spectral range and processes for generating EM frequencies when using lithium niobate (LN) for frequency mixing. AO, acousto-optic; AOM, acousto-optic modulation; χ (2) , second-order nonlinearity; χ (3) , third-order nonlinearity; EO, electro-optic; EOM, electro-optic modulation; HHG, high-harmonic generation; IR, infrared; OFC, optical frequency comb; OPO, optical paramedic oscillator; OR, optical rectification; SCG, supercontinuum generation; SHG, second-harmonic generation; UV, ultraviolet. 
    more » « less
  5. Mid-infrared photonic integrated circuits (PICs) that combine on-chip light sources with other optical components constitute a key enabler for applications such as chemical sensing, light detection, ranging, and free-space communications. In this paper, we report the monolithic integration of interband cascade lasers emitting at 3.24 µm with passive, high-index-contrast waveguides made of chalcogenide glasses. Output from the chalcogenide waveguides exhibits pulsed peak power up to 150 mW (without roll-over), threshold current density 280 A/cm2, and slope efficiency 100 mW/A at 300 K, with a lower bound of 38% efficiency for coupling between the two waveguides. These results represent an important step toward the realization of fully integrated mid-infrared PICs.

     
    more » « less