We study the behavior of the activity of the parallel chip‐firing upon increasing the number of chips on an Erdős–Rényi random graph. We show that in various situations the resulting activity diagrams converge to a devil's staircase as we increase the number of vertices. Such a phenomenon was proved in an earlier paper by Levine for complete graphs, by relating the activity to the rotation number of a cycle map. Our method in this article is to generalize the parallel chip‐firing to graphons. Then we show that the earlier results on complete graphs generalize to constant graphons. Moreover, we prove a continuity result for the activity on graphons. These statements enable us to prove results on the activity of the parallel chip‐firing on large random graphs. We also address several problems concerning chip‐firing on graphons, and pose open problems. In particular, we show that the activity of a chip configuration on a graphon does not necessarily exist, but it does exist for every chip configuration on a large class of graphons.
We demonstrated the design and experimental results of the near-infrared lab-on-a-chip optical biosensor platform that monolithically integrates the micro-ring-resonator and the on-chip spectrometer on the SOI wafer with the limit of detection of 0.042 RIU.
more » « less- Award ID(s):
- 1932753
- NSF-PAR ID:
- 10472264
- Publisher / Repository:
- Optica Publishing Group
- Date Published:
- Journal Name:
- CLEO 2023
- ISBN:
- 978-1-957171-25-8
- Page Range / eLocation ID:
- SF2E.1
- Format(s):
- Medium: X
- Location:
- San Jose, CA
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Rapid surface charge mapping of a solid surface remains a challenge. In this study, we present a novel microchip based on liquid crystals for assessing the surface charge distribution of a planar or soft surface. This chip enables rapid measurements of the local surface charge distribution of a charged surface. The chip consists of a micropillar array fabricated on a transparent indium tin oxide substrate, while the liquid crystal is used to fill in the gaps between the micropillar structures. When an object is placed on top of the chip, the local surface charge (or zeta potential) influences the orientation of the liquid crystal molecules, resulting in changes in the magnitude of transmitted light. By measuring the intensity of the transmitted light, the distribution of the surface charge can be accurately quantified. We calibrated the chip in a three-electrode configuration and demonstrated the validity of the chip for rapid surface charge mapping using a borosilicate glass slide. This chip offers noninvasive, rapid mapping of surface charges on charged surfaces, with no need for physical or chemical modifications, and has broad potential applications in biomedical research and advanced material design.
-
Since its advent in the 1970s, optical tweezers have been widely deployed as a preferred non-contact technique for manipulating microscale objects. On-chip integrated optical tweezers, which afford significant size, weight, and cost benefits, have been implemented, relying upon near-field evanescent waves. As a result, these tweezers are only capable of manipulation in near-surface regions and often demand high power since the evanescent interactions are relatively weak. We introduce on-chip optical tweezers based on freeform micro-optics, which comprise optical reflectors or refractive lenses integrated on waveguide end facets via two-photon polymerization. The freeform optical design offers unprecedented degrees of freedom to design optical fields with strong three-dimensional intensity gradients, useful for trapping and manipulating suspended particles in an integrated chip-scale platform. We demonstrate the design, fabrication, and measurement of both reflective and refractive micro-optical tweezers. The reflective tweezers feature a remarkably low trapping threshold power, and the refractive tweezers are particularly useful for multiparticle trapping and interparticle interaction analysis. Our integrated micro-optical tweezers uniquely combine a compact footprint, broadband operation, high trapping efficiency, and scalable integration with planar photonic circuits. This class of tweezers is promising for on-chip sensing, cell assembly, particle dynamics analysis, and ion trapping.
-
Abstract The design and manufacture of an origami‐based liver‐on‐a‐chip device is presented, together with demonstrations of the chip's effectiveness at recapitulating some of the liver's key in vivo architecture, physical microenvironment, and functions. Laser‐cut layers of polyimide tape are folded together with polycarbonate nanoporous membranes to create a stack of three adjacent flow chambers separated by the membranes. Endothelial cells are seeded in the upper and lower flow chambers to simulate sinusoids, and hepatocytes are seeded in the middle flow chamber. Nutrients and metabolites flow through the simulated sinusoids and diffuse between the vascular pathways and the hepatocyte layers, mimicking physiological microcirculation. Studies of cell viability, metabolic functions, and hepatotoxicity of pharmaceutical compounds show that the endothelialized liver‐on‐a‐chip model is conducive to maintaining hepatocyte functions and evaluation of the hepatotoxicity of drugs. The unique origami approach speeds chip development and optimization, effectively simplifying the laboratory‐scale fabrication of on‐chip models of human tissues without necessarily reducing their structural and functional sophistication.
-
The terahertz regime is widely recognized as a fundamental domain with significant potential to address the demands of next-generation wireless communications. In parallel, mode division multiplexing based on orbital angular momentum (OAM) shows promise in enhancing bandwidth utilization, thereby expanding the overall communication channel capacity. In this study, we present both theoretical and experimental demonstrations of an on-chip terahertz OAM demultiplexer. This device effectively couples and steers seven incident terahertz vortex beams into distinct high-quality focusing surface plasmonic beams, and the focusing directions can be arbitrarily designated. The proposed design strategy integrates space-to-chip mode conversion, OAM recognition, and on-chip routing in a compact space with subwavelength thickness, exhibiting versatility and superior performance.