skip to main content


Title: Spatial variation in the intensity of interactions via heterospecific pollen transfer may contribute to local and global patterns of plant diversity
Abstract Background

Studies that aim to understand the processes that generate and organize plant diversity in nature have a long history in ecology. Among these, the study of plant–plant interactions that take place indirectly via pollinator choice and floral visitation has been paramount. Current evidence, however, indicates that plants can interact more directly via heterospecific pollen (HP) transfer and that these interactions are ubiquitous and can have strong fitness effects. The intensity of HP interactions can also vary spatially, with important implications for floral evolution and community assembly.

Scope

Interest in understanding the role of heterospecific pollen transfer in the diversification and organization of plant communities is rapidly rising. The existence of spatial variation in the intensity of species interactions and their role in shaping patterns of diversity is also well recognized. However, after 40 years of research, the importance of spatial variation in HP transfer intensity and effects remains poorly known, and thus we have ignored its potential in shaping patterns of diversity at local and global scales. Here, I develop a conceptual framework and summarize existing evidence for the ecological and evolutionary consequences of spatial variation in HP transfer interactions and outline future directions in this field.

Conclusions

The drivers of variation in HP transfer discussed here illustrate the high potential for geographic variation in HP intensity and its effects, as well as in the evolutionary responses to HP receipt. So far, the study of pollinator-mediated plant–plant interactions has been almost entirely dominated by studies of pre-pollination interactions even though their outcomes can be influenced by plant–plant interactions that take place on the stigma. It is hence critical that we fully evaluate the consequences and context-dependency of HP transfer interactions in order to gain a more complete understanding of the role that plant–pollinator interactions play in generating and organizing plant biodiversity.

 
more » « less
Award ID(s):
1931163
NSF-PAR ID:
10472273
Author(s) / Creator(s):
Publisher / Repository:
Oxford Academic
Date Published:
Journal Name:
Annals of Botany
Volume:
128
Issue:
4
ISSN:
0305-7364
Page Range / eLocation ID:
383 to 394
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The ecological dynamics of co‐flowering communities are largely mediated by pollinators. However, current understanding of pollinator‐mediated interactions primarily relies on how co‐flowering plants influence attraction of shared pollinators, and much less is known about plant–plant interactions that occur via heterospecific pollen (HP) transfer. Invaded communities in particular can be highly affected by the transfer of alien pollen, but the strength, drivers and fitness consequences of these interactions at a community scale are not well understood.

    Here we analyse HP transfer networks in nine coastal communities in the Yucatan Mexico that vary in the relative abundance of invasive flowers to evaluate how HP donation and receipt varies between native and alien plants. We further evaluate whether HP donation and receipt are mediated by floral traits (e.g. display, flower size) or pollinator visitation rate. Finally, we evaluated whether post‐pollination success (proportion of pollen tubes produced) was affected by alien HP receipt and whether the effect varied between native and alien recipients.

    HP transfer networks exhibit relatively high connectance (c. 15%), suggesting high HP transfer within the studied communities. Significant network nestedness further suggests the existence of species that predominantly act as HP donors or recipients in the community. Species‐level analyses showed that natives receive 80% more HP compared to alien species, and that alien plants donate 40% more HP than natives. HP receipt and donation were mediated by different floral traits and such effects were independent of plant origin (native or alien). The proportion of alien HP received significantly affected conspecific pollen tube success in natives, but not that of alien species.

    Synthesis. Our results suggest that HP transfer in invaded communities is widespread, and that native and alien species play different roles within HP transfer networks, which are mediated by a different suite of floral traits. Alien species, in particular, play a central role as HP donors and are more tolerant to HP receipt than natives—a finding that points to two overlooked mechanisms facilitating alien plant invasion and success within native co‐flowering communities.

     
    more » « less
  2. Abstract

    Pollinator sharing often leads to receipt of heterospecific pollen (HP) along with conspecific pollen. As a result, flowering plants can accumulate diverse communities of HP on stigmas. While variation in HP diversity is an important selective force contributing to flowering plant fitness, evolution and community assembly, our understanding of the extent and drivers of heterogeneity of HP diversity is limited.

    In this study, we examined the species compositions and abundances of ~1000 HP communities across 59 co‐flowering plant species in three serpentine seep communities in California, USA. We evaluated the variation in HP diversity (γ diversity) across plant species in each seep and asked whether the variation in HP γ diversity was caused by variation in HP diversity within stigmas (α diversity) or HP compositional variation among stigmas (β diversity) due to the replacement of HP species (turnover) or their loss (nestedness) from one stigma to another. We further evaluated the potential drivers of variation in HP α and β diversity using phylogenetic structural equation models.

    We found that variation in HP γ diversity across plant species was driven strongly by differences among species in HP α diversity and to a lesser extent by HP β diversity. HP community turnover contributed more to HP β diversity than nestedness consistently across plant species and seeps, suggesting a general pattern of HP compositional heterogeneity from stigma to stigma. The phylogenetic structural equation models further revealed that floral traits (e.g., stigma area, stigma‐anther distance, stigma exposure) and floral abundance were key in determining HP α diversity by influencing HP abundance (load size), while floral traits and abundance showed variable impact on HP β diversity (turnover and nestedness). Pollination generalism contributed relatively less to HP‐α and β diversity.

    These findings disentangle the heterogeneity in HP diversity at different levels, which is essential for understanding the process underlying patterns of HP receipt in plant communities. That floral traits drive the heterogeneity in HP diversity points to additional avenues by which HP receipt may contribute to plant evolution.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  3. Abstract

    Competition, niche differences and chance all contribute to community assembly; yet, the role of reproductive interactions between species is often less appreciated. Closely related plant species that share floral form, phenology and habitat often interact through pollination. They potentially facilitate pollinator attraction, compete for pollination services and/or exchange pollen. If reproductive processes are important to co‐occurrence, we predicted that fitness costs of heterospecific pollen transfer or pollen limitation should result in lower rates of co‐occurrence among outcrossing congeners. In contrast, selfers, which may be less exposed to heterospecific pollen, and/or less negatively affected by it, should co‐occur more frequently.

    Flower size is an excellent proxy for mating system in clovers. Using herbarium records and three independent field datasets, we documented co‐occurrence patterns ofTrifoliumat 1 m2–1 km2scales in California. Using a randomization procedure to reshuffle matrices of community membership, we generated null hypotheses for the expected composition of large‐ and small‐flowered species inTrifoliumcommunities of different sizes.

    Across all spatial scales, large‐flowered outcrossers were over‐represented at sites lacking congeners, but under‐represented in communities with multiple congeners. Conversely, small‐flowered selfers often occupied sites with multiple otherTrifoliumspecies. Patterns for plant height and leaf size, which are weakly or strongly correlated with flower size, did not explain co‐occurrence patterns as robustly. Regression analysis and model selection corroborated the null model analyses, indicating that the likelihood of co‐occurrence decreased as flower size, and thus reliance on outcrossing, increased.

    Synthesis. This study suggests that reproductive traits and processes may be significant contributors to community assembly and co‐occurrence in flowering plants.

     
    more » « less
  4. Boege, Karina (Ed.)
    Abstract Pollinator-mediated competition and facilitation are two important mechanisms mediating co-flowering community assembly. Experimental studies, however, have mostly focused on evaluating outcomes for a single interacting partner at a single location. Studies that evaluate spatial variation in the bidirectional effects between co-flowering species are necessary if we aim to advance our understanding of the processes that mediate species coexistence in diverse co-flowering communities. Here, we examine geographic variation (i.e. at landscape level) in bidirectional pollinator-mediated effects between co-flowering Mimulus guttatus and Delphinium uliginosum. We evaluated effects on pollen transfer dynamics (conspecific and heterospecific pollen deposition) and plant reproductive success. We found evidence of asymmetrical effects (one species is disrupted and the other one is facilitated) but the effects were highly dependent on geographical location. Furthermore, effects on pollen transfer dynamics did not always translate to effects on overall plant reproductive success (i.e. pollen tube growth) highlighting the importance of evaluating effects at multiple stages of the pollination process. Overall, our results provide evidence of a spatial mosaic of pollinator-mediated interactions between co-flowering species and suggest that community assembly processes could result from competition and facilitation acting simultaneously. Our study highlights the importance of experimental studies that evaluate the prevalence of competitive and facilitative interactions in the field, and that expand across a wide geographical context, in order to more fully understand the mechanisms that shape plant communities in nature. 
    more » « less
  5. Abstract

    Introduced species can have cascading effects on ecological communities, but indirect effects of species introductions are rarely the focus of ecological studies. For example, managed honey bees (Apis mellifera) have been widely introduced outside their native range and are increasingly dominant floral visitors. Multiple studies have documented how honey bees impact native bee communities through floral resource competition, but few have quantified how these competitive interactions indirectly affect pollination and plant reproduction. Such indirect effects are hard to detect because honey bees are themselves pollinators and may directly impact pollination through their own floral visits. The potentially huge but poorly understood impacts that non‐native honey bees have on native plant populations combined with increased pressure from beekeepers to place hives in U.S. National Parks and Forests makes exploring impacts of honey bee introductions on native plant pollination of pressing concern. In this study, we used experimental hive additions, field observations, as well as single‐visit and multiple‐visit pollination effectiveness trials across multiple years to untangle the direct and indirect impacts of increasing honey bee abundance on the pollination of an ecologically important wildflower,Camassia quamash. We found compelling evidence that honey bee introductions indirectly decrease pollination by reducing nectar and pollen availability and competitively excluding visits from more effective native bees. In contrast, the direct impact of honey bee visits on pollination was negligible, and, if anything, negative. Honey bees were ineffective pollinators, and increasing visit quantity could not compensate for inferior visit quality. Indeed, although the effect was not statistically significant, increased honey bee visits had a marginally negative impact on seed production. Thus, honey bee introductions may erode longstanding plant‐pollinator mutualisms, with negative consequences for plant reproduction. Our study calls for a more thorough understanding of the indirect effects of species introductions and more careful coordination of hive placements.

     
    more » « less