skip to main content


Title: Hydrodynamics of higher-rank gauge theories

We extend recent work on hydrodynamics with global multipolarsymmetries — known as “fracton hydrodynamics” — to systems in which themultipolar symmetries are gauged. We refer to the latter as “fractonmagnetohydrodynamics”, in analogy to conventional magnetohydrodynamics(MHD), which governs systems with gauged charge conservation. We showthat fracton MHD arises naturally from higher-rank Maxwell’s equationsand in systems with one-form symmetries obeying certain constraints;while we focus on “minimal” higher-rank generalizations of MHD thatrealize diffusion, our methods may also be used to identify other, moreexotic hydrodynamic theories (e.g., with magnetic subdiffusion). Incontrast to semi-microscopic derivations of MHD, our approach elucidatesthe origin of the hydrodynamic modes by identifying the correspondinghigher-form symmetries. Being rooted in symmetries, the hydrodynamicmodes may persist even when the semi-microscopic equations no longerprovide an accurate description of the system.

 
more » « less
Award ID(s):
2145544
NSF-PAR ID:
10472281
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
SciPost
Date Published:
Journal Name:
SciPost Physics
Volume:
14
Issue:
3
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Based on several previous examples, we summarize explicitly thegeneral procedure to gauge models with subsystem symmetries, which aresymmetries with generators that have support within a sub-manifold ofthe system. The gauging process can be applied to any local quantummodel on a lattice that is invariant under the subsystem symmetry. Wefocus primarily on simple 3D paramagnetic states with planar symmetries.For these systems, the gauged theory may exhibit foliated fracton orderand we find that the species of symmetry charges in the paramagnetdirectly determine the resulting foliated fracton order. Moreover, wefind that gauging linear subsystem symmetries in 2D or 3D models resultsin a self-duality similar to gauging global symmetries in 1D. 
    more » « less
  2. A<sc>bstract</sc>

    We develop a Schwinger-Keldysh effective field theory describing the hydrodynamics of a fluid with conserved charge and dipole moments, together with conserved momentum. The resulting hydrodynamic modes are highly unusual, including sound waves with quadratic (magnon-like) dispersion relation and subdiffusive decay rate. Hydrodynamics itself is unstable below four spatial dimensions. We show that the momentum density is, at leading order, the Goldstone boson for a dipole symmetry which appears spontaneously broken at finite charge density. Unlike an ordinary fluid, the presence or absence of energy conservation qualitatively changes the decay rates of the hydrodynamic modes. This effective field theory naturally couples to curved spacetime and background gauge fields; in the flat spacetime limit, we reproduce the “mixed rank tensor fields” previously coupled to fracton matter.

     
    more » « less
  3. Electrolyte solutions play an important role in energy storage devices, whose performance relies heavily on the electrokinetic processes at sub-micron scales. Although fluctuations and stochastic features become more critical at small scales, the long-range Coulomb interactions pose a particular challenge for both theoretical analysis and simulation of fluid systems with fluctuating hydrodynamic and electrostatic interactions. Here, we present a theoretical framework based on the Landau–Lifshitz theory to derive closed-form expressions for fluctuation correlations in electrolyte solutions, indicating significantly different decorrelation processes of ionic concentration fluctuations from hydrodynamic fluctuations, which provides insights for understanding transport phenomena of coupled fluctuating hydrodynamics and electrokinetics. Furthermore, we simulate fluctuating electrokinetic systems using both molecular dynamics (MD) with explicit ions and mesoscopic charged dissipative particle dynamics (cDPD) with semi-implicit ions, from which we identify that the spatial probability density functions of local charge density follow a gamma distribution at sub-nanometre scale (i.e. $0.3\,{\rm nm}$ ) and converge to a Gaussian distribution above nanometre scales (i.e. $1.55\,{\rm nm}$ ), indicating the existence of a lower limit of length scale for mesoscale models using Gaussian fluctuations. The temporal correlation functions of both hydrodynamic and electrokinetic fluctuations are computed from all-atom MD and mesoscale cDPD simulations, showing good agreement with the theoretical predictions based on the linearized fluctuating hydrodynamics theory. 
    more » « less
  4. Recent advances in high-resolution imaging techniques and particle-based simulation methods have enabled the precise microscopic characterization of collective dynamics in various biological and engineered active matter systems. In parallel, data-driven algorithms for learning interpretable continuum models have shown promising potential for the recovery of underlying partial differential equations (PDEs) from continuum simulation data. By contrast, learning macroscopic hydrodynamic equations for active matter directly from experiments or particle simulations remains a major challenge, especially when continuum models are not known a priori or analytic coarse graining fails, as often is the case for nondilute and heterogeneous systems. Here, we present a framework that leverages spectral basis representations and sparse regression algorithms to discover PDE models from microscopic simulation and experimental data, while incorporating the relevant physical symmetries. We illustrate the practical potential through a range of applications, from a chiral active particle model mimicking nonidentical swimming cells to recent microroller experiments and schooling fish. In all these cases, our scheme learns hydrodynamic equations that reproduce the self-organized collective dynamics observed in the simulations and experiments. This inference framework makes it possible to measure a large number of hydrodynamic parameters in parallel and directly from video data.

     
    more » « less
  5. Abstract

    In this paper we outline the application of decomposition to condensation defects and their fusion rules. Briefly, a condensation defect is obtained by gauging a higher‐form symmetry along a submanifold, and so there is a natural interplay with notions of decomposition, the statement thatd‐dimensional quantum field theories with global ‐form symmetries are equivalent to disjoint unions of other quantum field theories. We will also construct new (sometimes non‐invertible) defects, and compute their fusion products, again utilizing decomposition. An important role will be played in all these analyses by theta angles for gauged higher‐form symmetries, which can be used to select individual universes in a decomposition.

     
    more » « less