skip to main content


Title: Relation between Baroclinity, Horizontal Vorticity, and Mesocyclone Evolution in the 6–7 April 2018 Monroe, Louisiana, Tornadic Supercell during VORTEX-SE
Abstract

This case study analyzes a tornadic supercell observed in northeast Louisiana as part of the Verification of the Origins of Rotation in Tornadoes Experiment Southeast (VORTEX-SE) on 6–7 April 2018. One mobile research radar (SR1-P), one WSR-88D equivalent (KULM), and two airborne radars (TAFT and TFOR) have sampled the storm at close proximity for ∼70 min through its mature phase, tornadogenesis at 2340 UTC, and dissipation and subsequent ingestion into a developing MCS segment. The 4D wind field and reflectivity from up to four Doppler analyses, combined with 4D diabatic Lagrangian analysis (DLA) retrievals, has enabled kinematic and thermodynamic analysis of storm-scale boundaries leading up to, during, and after the dissipation of the NWS-surveyed EF0 tornado. The kinematic and thermodynamic analyses reveal a transient current of low-level streamwise vorticity leading into the low-level supercell updraft, appearing similar to the streamwise vorticity current (SVC) that has been identified in supercell simulations and previously observed only kinematically. Vorticity dynamical calculations demonstrate that both baroclinity and horizontal stretching play significant roles in the generation and amplification of streamwise vorticity associated with this SVC. While the SVC does not directly feed streamwise vorticity to the tornado–cyclone, its development coincides with tornadogenesis and an intensification of the supercell’s main low-level updraft, although a causal relationship is unclear. Although the mesoscale environment is not high-shear/low-CAPE (HSLC), the updraft of the analyzed supercell shares some similarities to past observations and simulations of HSLC storms in the Southeast United States, most notably a pulse-like updraft that is maximized in the low- to midlevels of the storm.

Significance Statement

The purpose of this study is to analyze the airflow and thermodynamics of a highly observed tornado-producing supercell. While computer simulations can provide us with highly detailed looks at the complicated evolution of supercells, it is rare, due to the difficulty of data collection, to collect enough data to perform a highly detailed analysis on a particular supercell, especially in the Southeast United States. We identified a “current” of vorticity—rotating wind—that develops at the intersection of the supercell’s rain-cooled outflow and warm inflow, similar to previous simulations. This vorticity current develops and feeds the storm’s updraft as its tornado develops and the storm intensifies, although it does not directly enter the tornado.

 
more » « less
Award ID(s):
1917701 1917693
NSF-PAR ID:
10472413
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
151
Issue:
11
ISSN:
0027-0644
Format(s):
Medium: X Size: p. 2949-2976
Size(s):
p. 2949-2976
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Results from a large eddy simulation of a tornadic supercell developing in a horizontally homogeneous environment are presented which clearly illustrate a connection between low‐level mesoyclone development and the development of a streamwise vorticity current (SVC). Although the environment supports tornadic supercells, a strong low‐level mesocyclone (LLM) does not develop until a well‐defined SVC forms in the storm's forward flank. As the streamwise vorticity in the SVC flows southward and is tilted into the storm updraft creating updraft helicity, the LLM strengthens and lowers toward the surface. The SVC also focuses LLM development in a confined storm‐relative position favorable for converging/stretching preexisting vertical vorticity. Tornadogenesis occurs within ∼5 min of the establishment of a strong LLM. These results illustrate a possible mode of internal storm variability that may be an important factor in explaining why some supercells produce tornadoes while others do not in similar favorable environments.

     
    more » « less
  2. Abstract Sufficient low-level storm-relative flow is a necessary ingredient for sustained supercell thunderstorms and is connected to supercell updraft width. Assuming a supercell exists, the role of low-level storm-relative flow in regulating supercells’ low-level mesocyclone intensity is less clear. One possibility considered in this article is that storm-relative flow controls mesocyclone and tornado width via its modulation of overall updraft extent. This hypothesis relies on a previously postulated positive correspondence between updraft width, mesocyclone width, and tornado width. An alternative hypothesis is that mesocyclone characteristics are primarily regulated by horizontal streamwise vorticity irrespective of storm-relative flow. A matrix of supercell simulations was analyzed to address the aforementioned hypotheses, wherein horizontal streamwise vorticity and storm-relative flow were independently varied. Among these simulations, mesocyclone width and intensity were strongly correlated with horizontal streamwise vorticity, and comparatively weakly correlated with storm-relative flow, supporting the second hypothesis. Accompanying theory and trajectory analysis offers the physical explanation that, when storm-relative flow is large and updrafts are wide, vertically tilted streamwise vorticity is projected over a wider area but with a lesser average magnitude than when these parameters are small. These factors partially offset one another, degrading the correspondence of storm-relative flow with updraft circulation and rotational velocity, which are the mesocyclone attributes most closely tied to tornadoes. These results refute the previously purported connections between updraft width, mesocyclone width, and tornado width, and emphasize horizontal streamwise vorticity as the primary control on low-level mesocyclones in sustained supercells. Significance Statement The intensity of a supercell thunderstorm’s low-level rotation, known as the “mesocyclone,” is thought to influence tornado likelihood. Mesocyclone intensity depends on many environmental attributes that are often correlated with one another and difficult to disentangle. This study used a large body of numerical simulations to investigate the influence of the speed of low-level air entering a supercell (storm-relative flow), the horizontal spin of the ambient air entering the thunderstorm (streamwise vorticity), and the width of the storm’s updraft. Our results suggest that the rotation of the mesocyclone in supercells is primarily influenced by streamwise vorticity, with comparatively weaker connections to storm-relative flow and updraft width. These findings provide important clarification in our scientific understanding of how a storm’s environment influences the rate of rotation of its mesocyclone, and the associated tornado threat. 
    more » « less
  3. null (Ed.)
    Abstract Recent high-resolution numerical simulations of supercells have identified a feature referred to as the streamwise vorticity current (SVC). Some have presumed the SVC to play a role in tornadogenesis and maintenance, though observations of such a feature have been limited. To this end, 125-m dual-Doppler wind syntheses and mobile mesonet observations are used to examine three observed supercells for evidence of an SVC. Two of the three supercells are found to contain a feature similar to an SVC, while the other supercell contains an antistreamwise vorticity ribbon on the southern fringe of the forward flank. A closer examination of the two supercells with SVCs reveals that the SVCs are located on the cool side of boundaries within the forward flank that separate colder, more turbulent flow from warmer, more laminar flow, similar to numerical simulations. Furthermore, the observed SVCs are similar to those in simulations in that they appear to be associated with baroclinic vorticity generation and have similar appearances in vertical cross sections. Aside from some apparent differences in the location of the maximum streamwise vorticity between simulated and observed SVCs, the SVCs seen in numerical simulations are indeed similar to reality. The SVC, however, may not be essential for tornadogenesis, at least for weak tornadoes, because the supercell that did not have a well-defined SVC produced at least one brief, weak tornado during the analysis period. 
    more » « less
  4. Abstract Supercell storms can develop a “dynamical response” whereby upward accelerations in the lower troposphere amplify as a result of rotationally induced pressure falls aloft. These upward accelerations likely modulate a supercell’s ability to stretch near-surface vertical vorticity to achieve tornadogenesis. This study quantifies such a dynamical response as a function of environmental wind profiles commonly found near supercells. Self-organizing maps (SOMs) were used to identify recurring low-level wind profile patterns from 20,194 model-analyzed, near-supercell soundings. The SOM nodes with larger 0–500 m storm-relative helicity (SRH) and streamwise vorticity ( ω s ) corresponded to higher observed tornado probabilities. The distilled wind profiles from the SOMs were used to initialize idealized numerical simulations of updrafts. In environments with large 0–500 m SRH and large ω s , a rotationally induced pressure deficit, increased dynamic lifting, and a strengthened updraft resulted. The resulting upward-directed accelerations were an order of magnitude stronger than typical buoyant accelerations. At 500 m AGL, this dynamical response increased the vertical velocity by up to 25 m s –1 , vertical vorticity by up to 0.2 s –1 , and pressure deficit by up to 5 hPa. This response specifically augments the near-ground updraft (the midlevel updraft properties are almost identical across the simulations). However, dynamical responses only occurred in environments where 0–500 m SRH and ω s exceeded 110 m 2 s –2 and 0.015 s –1 , respectively. The presence vs. absence of this dynamical response may explain why environments with higher 0–500 m SRH and ω s correspond to greater tornado probabilities. 
    more » « less
  5. Abstract It has long been observed that interactions of a supercell with other storms or storm-scale boundaries sometimes seem to directly instigate tornadogenesis. First, the authors explore the frequency of such constructive interactions. WSR-88D radar data are used to categorize 136 tornadic supercells into isolated supercells and supercells that interacted with external factors within 20 min before tornadogenesis. Most cases (80%) showed some form of external influence prior to tornadogenesis. Common patterns of interactions, the typical supercell quadrant that is affected, and changes in azimuthal shear are also identified. To further study these interactions, two sets of idealized CM1 simulations are performed. The first set demonstrates that the speed of the near-ground horizontal flow relative to the updraft can control whether a vortex patch develops into a tornado. A weaker updraft-relative flow is favorable because the developing vortex stays in the updraft region longer and becomes less tilted. Building on these results, it is shown that external outflow can lead to tornado formation by a deceleration of the updraft-relative flow. The deceleration is caused by the pressure gradient force associated with the external outflow, which is already noticeable several kilometers ahead of the outflow boundary. This offers another possible mechanism by which external outflow can act as a catalyst for supercell tornadogenesis. 
    more » « less