We expand methods for estimating an optimal treatment regime (OTR) from the personalized medicine literature to educational data mining applications. As part of this development, we detail and modify the current state-of-the-art, assess the efcacy of the approaches for student success studies, and provide practitioners the machinery to apply the methods in their specifc problems. Our particular interest is to estimate an optimal treatment regime for students enrolled in an introductory statistics course at San Diego State University (SDSU). The available treatments are combinations of three programs SDSU implemented to foster student success in this large enrollment, bottleneck STEM course. We leverage tree-based reinforcement learning approaches based on either an inverse probability-weighted purity measure or an augmented probability-weighted purity measure. The thereby deduced OTR promises to signifcantly increase the average grade in the introductory course and also reveals the need for program recommendations to students as only very few, on their own, selected their optimal treatment.
more »
« less
Designing Optimal, Data-Driven Policies from Multisite Randomized Trials
Optimal treatment regimes (OTRs) have been widely employed in computer science and personalized medicine to provide data-driven, optimal recommendations to individuals. However, previous research on OTRs has primarily focused on settings that are independent and identically distributed, with little attention given to the unique characteristics of educational settings, where students are nested within schools and there are hierarchical dependencies. The goal of this study is to propose a framework for designing OTRs from multisite randomized trials, a commonly used experimental design in education and psychology to evaluate educational programs. We investigate modifications to popular OTR methods, specifically Q-learning and weighting methods, in order to improve their performance in multisite randomized trials. A total of 12 modifications, 6 for Q-learning and 6 for weighting, are proposed by utilizing different multilevel models, moderators, and augmentations. Simulation studies reveal that all Q-learning modifications improve performance in multisite randomized trials and the modifications that incorporate random treatment effects show the most promise in handling cluster-level moderators. Among weighting methods, the modification that incorporates cluster dummies into moderator variables and augmentation terms performs best across simulation conditions. The proposed modifications are demonstrated through an application to estimate an OTR of conditional cash transfer programs using a multisite randomized trial in Colombia to maximize educational attainment.
more »
« less
- Award ID(s):
- 2225321
- PAR ID:
- 10472447
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Psychometrika
- ISSN:
- 0033-3123
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Past research has demonstrated that treatment effects frequently vary across sites (e.g., schools) and that such variation can be explained by site-level or individual-level variables (e.g., school size or gender). The purpose of this study is to develop a statistical framework and tools for the effective and efficient design of multisite randomized trials (MRTs) probing moderated treatment effects. The framework considers three core facets of such designs: (a) Level 1 and Level 2 moderators, (b) random and nonrandomly varying slopes (coefficients) of the treatment variable and its interaction terms with the moderators, and (c) binary and continuous moderators. We validate the formulas for calculating statistical power and the minimum detectable effect size difference with simulations, probe its sensitivity to model assumptions, execute the formulas in accessible software, demonstrate an application, and provide suggestions in designing MRTs probing moderated treatment effects.more » « less
-
Identifying treatment effect modifiers (i.e., moderators) plays an essential role in improving treatment efficacy when substantial treatment heterogeneity exists. However, studies are often underpowered for detecting treatment effect modifiers, and exploratory analyses that examine one moderator per statistical model often yield spurious interactions. Therefore, in this work, we focus on creating an intuitive and readily implementable framework to facilitate the discovery of treatment effect modifiers and to make treatment recommendations for time-to-event outcomes. To minimize the impact of a misspecified main effect and avoid complex modeling, we construct the framework by matching the treated with the controls and modeling the conditional average treatment effect via regressing the difference in the observed outcomes of a matched pair on the averaged moderators. Inverse-probability-of-censoring weighting is used to handle censored observations. As matching is the foundation of the proposed methods, we explore different matching metrics and recommend the use of Mahalanobis distance when both continuous and categorical moderators are present. After matching, the proposed framework can be flexibly combined with popular variable selection and prediction methods such as linear regression, least absolute shrinkage and selection operator (Lasso), and random forest to create different combinations of potential moderators. The optimal combination is determined by the out-of-bag prediction error and the area under the receiver operating characteristic curve in making correct treatment recommendations. We compare the performance of various combined moderators through extensive simulations and the analysis of real trial data. Our approach can be easily implemented using existing R packages, resulting in a straightforward optimal combined moderator to make treatment recommendations.more » « less
-
Learning optimal individualized treatment rules (ITRs) has become increasingly important in the modern era of precision medicine. Many statistical and machine learning methods for learning optimal ITRs have been developed in the literature. However, most existing methods are based on data collected from traditional randomized controlled trials and thus cannot take advantage of the accumulative evidence when patients enter the trials sequentially. It is also ethically important that future patients should have a high probability to be treated optimally based on the updated knowledge so far. In this work, we propose a new design called sequentially rule-adaptive trials to learn optimal ITRs based on the contextual bandit framework, in contrast to the response-adaptive design in traditional adaptive trials. In our design, each entering patient will be allocated with a high probability to the current best treatment for this patient, which is estimated using the past data based on some machine learning algorithm (for example, outcome weighted learning in our implementation). We explore the tradeoff between training and test values of the estimated ITR in single-stage problems by proving theoretically that for a higher probability of following the estimated ITR, the training value converges to the optimal value at a faster rate, while the test value converges at a slower rate. This problem is different from traditional decision problems in the sense that the training data are generated sequentially and are dependent. We also develop a tool that combines martingale with empirical process to tackle the problem that cannot be solved by previous techniques for i.i.d. data. We show by numerical examples that without much loss of the test value, our proposed algorithm can improve the training value significantly as compared to existing methods. Finally, we use a real data study to illustrate the performance of the proposed method.more » « less
-
Researchers often apply moderation analyses to examine whether the effects of an intervention differ conditional on individual or cluster moderator variables such as gender, pretest, or school size. This study develops formulas for power analyses to detect moderator effects in two-level cluster randomized trials (CRTs) using linear models. We derive the formulas for estimating statistical power, minimum detectable effect size difference and 95% confidence intervals for cluster- and individual-level moderators. Our framework accommodates binary or continuous moderators, designs with or without covariates, and effects of individual-level moderators that vary randomly or nonrandomly across clusters. A small Monte Carlo simulation confirms the accuracy of our formulas. We also compare power between main effect analysis and moderation analysis, discuss the effects of mis-specification of the moderator slope (randomly vs. non-randomly varying), and conclude with directions for future research. We provide software for conducting a power analysis of moderator effects in CRTs.more » « less
An official website of the United States government

