An ideal integration of autonomous agents in a human world implies that they are able to collaborate on human terms. In particular, theory of mind plays an important role in maintaining common ground during human collaboration and communication. To enable theory of mind modeling in situated interactions, we introduce a fine-grained dataset of collaborative tasks performed by pairs of human subjects in the 3D virtual blocks world of Minecraft. It provides information that captures partners’ beliefs of the world and of each other as an interaction unfolds, bringing abundant opportunities to study human collaborative behaviors in situated language communication. As a first step towards our goal of developing embodied AI agents able to infer belief states of collaborative partners in situ, we build and present results on computational models for several theory of mind tasks.
more »
« less
Towards Collaborative Plan Acquisition through Theory of Mind Modeling in Situated Dialogue
Collaborative tasks often begin with partial task knowledge and incomplete initial plans from each partner. To complete these tasks, agents need to engage in situated communication with their partners and coordinate their partial plans towards a complete plan to achieve a joint task goal. While such collaboration seems effortless in a human-human team, it is highly challenging for human-AI collaboration. To address this limitation, this paper takes a step towards collaborative plan acquisition, where humans and agents strive to learn and communicate with each other to acquire a complete plan for joint tasks. Specifically, we formulate a novel problem for agents to predict the missing task knowledge for themselves and for their partners based on rich perceptual and dialogue history. We extend a situated dialogue benchmark for symmetric collaborative tasks in a 3D blocks world and investigate computational strategies for plan acquisition. Our empirical results suggest that predicting the partner's missing knowledge is a more viable approach than predicting one's own. We show that explicit modeling of the partner's dialogue moves and mental states produces improved and more stable results than without. These results provide insight for future AI agents that can predict what knowledge their partner is missing and, therefore, can proactively communicate such information to help their partner acquire such missing knowledge toward a common understanding of joint tasks.
more »
« less
- Award ID(s):
- 1949634
- PAR ID:
- 10472509
- Publisher / Repository:
- IJCAI 2023
- Date Published:
- Journal Name:
- 2023 International Joint Conferences on Artificial Intelligence
- ISBN:
- 978-1-956792-03-4
- Format(s):
- Medium: X
- Location:
- Macao, SAR
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Natarajan, Ganapathy; Zhang, Hao; Ng, Ean H (Ed.)In collaborative systems, both technical and social factors influence decisions. While collaborative options may yield desired outcomes, a lack of understanding between parties can hinder collaboration. Effective communication facilitates information exchange and comprehension of partners' intentions, guiding designers toward collaborative decisions. This study examines the impact of a communication channel designed to share actors' collaboration intentions on the accuracy of information exchange and strategic decisions in a collaborative design process. The research uses secondary data from a human experiment involving a collaborative system design problem to assess the intervention's effects. The experimental procedure involves actors completing 30 paired tasks, earning or losing points based on joint decisions with their partners. Participants represent decision-makers from different car manufacturing companies. The experimental data includes 28 junior-year plus STEM undergraduate and graduate students completing paired decision-making collaborative tasks allowed to exchange verbal information and have an additional communication channel to share intentions. The usage of the communication channel is investigated using multiple statistical tests. Results indicate that actors share their intentions accurately and honestly via the communication channel. Even in inaccurate cases, actors’ decisions shift significantly due to their partner's reported strategic intentions. This research underscores the importance of communication for better management of collaborative systems.more » « less
-
Enabling efficient communication in artificial agents brings us closer to machines that can cooperate with each other and with human partners. Hand-engineered approaches have substantial limitations, leading to increased interest in methods for communication to emerge autonomously between artificial agents. Most of the research in the field explores unsituated communication in one-step referential tasks. The tasks are not temporally interactive and lack time pressures typically present in natural communication and language learning. In these settings, agents can successfully learn what to communicate but not when or whether to communicate. Here, we extend the literature by assessing emergence of communication between reinforcement learning agents in a temporally interactive, cooperative task of navigating a gridworld environment. We show that, through multi-step interactions, agents develop just-in-time messaging protocols that enable them to successfully solve the task. With memory—which provides flexibility around message timing—agent pairs converge to a look-ahead communication protocol, finding an optimal solution to the task more quickly than without memory. Lastly, we explore situated communication, enabling the acting agent to choose when and whether to communicate. With the opportunity cost of forgoing an action to communicate, the acting agent learns to solicit information sparingly, in line with the Gricean Maxim of quantity. Our results point towards the importance of studying language emergence through situated communication in multi-step interactions.more » « less
-
We present GhostAR, a time-space editor for authoring and acting Human-Robot-Collaborative (HRC) tasks in-situ. Our system adopts an embodied authoring approach in Augmented Reality (AR), for spatially editing the actions and programming the robots through demonstrative role-playing. We propose a novel HRC workflow that externalizes user’s authoring as demonstrative and editable AR ghost, allowing for spatially situated visual referencing, realistic animated simulation, and collaborative action guidance. We develop a dynamic time warping (DTW) based collaboration model which takes the real-time captured motion as inputs, maps it to the previously authored human actions, and outputs the corresponding robot actions to achieve adaptive collaboration. We emphasize an in-situ authoring and rapid iterations of joint plans without an offline training process. Further, we demonstrate and evaluate the effectiveness of our workflow through HRC use cases and a three-session user study.more » « less
-
As humans and robots start to collaborate in close proximity, robots are tasked to perceive, comprehend, and anticipate human partners' actions, which demands a predictive model to describe how humans collaborate with each other in joint actions. Previous studies either simplify the collaborative task as an optimal control problem between two agents or do not consider the learning process of humans during repeated interaction. This idyllic representation is thus not able to model human rationality and the learning process. In this paper, a bounded-rational and game-theoretical human cooperative model is developed to describe the cooperative behaviors of the human dyad. An experiment of a joint object pushing collaborative task was conducted with 30 human subjects using haptic interfaces in a virtual environment. The proposed model uses inverse optimal control (IOC) to model the reward parameters in the collaborative task. The collected data verified the accuracy of the predicted human trajectory generated from the bounded rational model excels the one with a fully rational model. We further provide insight from the conducted experiments about the effects of leadership on the performance of human collaboration.more » « less
An official website of the United States government
