skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rhizosphere microbial community composition shifts diurnally and in response to natural variation in host clock phenotype
ABSTRACT Plant-associated microbial assemblages are known to shift at time scales aligned with plant phenology, as influenced by the changes in plant-derived nutrient concentrations and abiotic conditions observed over a growing season. But these same factors can change dramatically in a sub-24-hour period, and it is poorly understood how such diel cycling may influence plant-associated microbiomes. Plants respond to the change from day to night via mechanisms collectively referred to as the internal “clock,” and clock phenotypes are associated with shifts in rhizosphere exudates and other changes that we hypothesize could affect rhizosphere microbes. The mustardBoechera strictahas wild populations that contain multiple clock phenotypes of either a 21- or a 24-hour cycle. We grew plants of both phenotypes (two genotypes per phenotype) in incubators that simulated natural diel cycling or that maintained constant light and temperature. Under both cycling and constant conditions, the extracted DNA concentration and the composition of rhizosphere microbial assemblages differed between time points, with daytime DNA concentrations often triple what were observed at night and microbial community composition differing by, for instance, up to 17%. While we found that plants of different genotypes were associated with variation in rhizosphere assemblages, we did not see an effect on soil conditioned by a particular host plant circadian phenotype on subsequent generations of plants. Our results suggest that rhizosphere microbiomes are dynamic at sub-24-hour periods, and those dynamics are shaped by diel cycling in host plant phenotype. IMPORTANCEWe find that the rhizosphere microbiome shifts in composition and extractable DNA concentration in sub-24-hour periods as influenced by the plant host’s internal clock. These results suggest that host plant clock phenotypes could be an important determinant of variation in rhizosphere microbiomes.  more » « less
Award ID(s):
1655726
PAR ID:
10472517
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Heck, Michelle
Publisher / Repository:
American Society for Microbiology
Date Published:
Journal Name:
mSystems
Volume:
8
Issue:
3
ISSN:
2379-5077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bulgarelli, Davide (Ed.)
    ABSTRACT The composition of microbial communities found in association with plants is influenced by host phenotype and genotype. However, the ways in which specific genetic architectures of host plants shape microbiomes are unknown. Genome duplication events are common in the evolutionary history of plants and influence many important plant traits, and thus, they may affect associated microbial communities. Using experimentally induced whole-genome duplication (WGD), we tested the effect of WGD on rhizosphere bacterial communities in Arabidopsis thaliana . We performed 16S rRNA amplicon sequencing to characterize differences between microbiomes associated with specific host genetic backgrounds (Columbia versus Landsberg) and ploidy levels (diploid versus tetraploid). We modeled relative abundances of bacterial taxa using a hierarchical Bayesian approach. We found that host genetic background and ploidy level affected rhizosphere community composition. We then tested to what extent microbiomes derived from a specific genetic background or ploidy level affected plant performance by inoculating sterile seedlings with microbial communities harvested from a prior generation. We found a negative effect of the tetraploid Columbia microbiome on growth of all four plant genetic backgrounds. These findings suggest an interplay between host genetic background and ploidy level and bacterial community assembly with potential ramifications for host fitness. Given the prevalence of ploidy-level variation in both wild and managed plant populations, the effects on microbiomes of this aspect of host genetic architecture could be a widespread driver of differences in plant microbiomes. IMPORTANCE Plants influence the composition of their associated microbial communities, yet the underlying host-associated genetic determinants are typically unknown. Genome duplication events are common in the evolutionary history of plants and affect many plant traits. Using Arabidopsis thaliana , we characterized how whole-genome duplication affected the composition of rhizosphere bacterial communities and how bacterial communities associated with two host plant genetic backgrounds and ploidy levels affected subsequent plant growth. We observed an interaction between ploidy level and genetic background that affected both bacterial community composition and function. This research reveals how genome duplication, a widespread genetic feature of both wild and crop plant species, influences bacterial assemblages and affects plant growth. 
    more » « less
  2. Summary Macroorganisms’ genotypes shape their phenotypes, which in turn shape the habitat available to potential microbial symbionts. This influence of host genotype on microbiome composition has been demonstrated in many systems; however, most previous studies have either compared unrelated genotypes or delved into molecular mechanisms. As a result, it is currently unclear whether the heritability of host‐associated microbiomes follows similar patterns to the heritability of other complex traits.We take a new approach to this question by comparing the microbiomes of diverse maize inbred lines and their F1hybrid offspring, which we quantified in both rhizosphere and leaves of field‐grown plants using 16S‐v4 and ITS1 amplicon sequencing.We show that inbred lines and hybrids differ consistently in the composition of bacterial and fungal rhizosphere communities, as well as leaf‐associated fungal communities. A wide range of microbiome features display heterosis within individual crosses, consistent with patterns for nonmicrobial maize phenotypes. For leaf microbiomes, these results were supported by the observation that broad‐sense heritability in hybrids was substantially higher than narrow‐sense heritability.Our results support our hypothesis that at least some heterotic host traits affect microbiome composition in maize. 
    more » « less
  3. Abstract It is increasingly recognized that different genetic variants of hosts can uniquely shape their microbiomes. Invasive species often evolve in their introduced ranges, but little is known about the potential for their microbial associations to change during invasion as a result. We asked whether host genotype (G), microbial environment (E), or their interaction (G × E) affected the composition and diversity of host-associated microbiomes inCentaurea solstitialis(yellow starthistle), a Eurasian plant that is known to have evolved novel genotypes and phenotypes and to have altered microbial interactions, in its severe invasion of CA, USA. We conducted an experiment in which native and invading plant genotypes were inoculated with native and invaded range soil microbial communities. We used amplicon sequencing to characterize rhizosphere bacteria in both the experiment and the field soils from which they were derived. We found that native and invading plant genotypes accumulated different microbial associations at the family level in each soil community, often counter to differences in family abundance between soil communities. Root associations with potentially beneficial Streptomycetaceae were particularly interesting, as these were more abundant in the invaded range field soil and accumulated on invading genotypes. We also found that bacterial diversity is higher in invaded soils, but that invading genotypes accumulated a lower diversity of bacteria and unique microbial composition in experimental inoculations, relative to native genotypes. Thus variation in microbial associations of invaders was driven by the interaction of plant G and microbial E, and rhizosphere microbial communities appear to change in composition in response to host evolution during invasion. 
    more » « less
  4. Abstract Root hairs are considered important for rhizosphere formation, which affects root system functioning. Through interactions with soil microorganisms mediated by root exudation, root hairs may affect the phenotypes and growth of young plants. We tested this hypothesis by integrating results from two experiments: (1) a factorial greenhouse seedling experiment withZea mays B73‐wtand its root‐hairless mutant,B73‐rth3, grown in live and autoclaved soil, quantifying 15 phenotypic traits, seven growth rates, and soil microbiomes and (2) a semi‐hydroponic system quantifying root exudation of maize genotypes. Possibly as compensation for lacking root hairs,B73‐rth3seedlings allocated more biomass to roots and grew slower thanB73‐wtseedlings in live soil, whereasB73‐wtseedlings grew slowest in autoclaved soil, suggesting root hairs can be costly and their benefits were realized with more complete soil microbial assemblages. There were substantial differences in root exudation between genotypes and in rhizosphere versus non‐rhizosphere microbiomes. The microbial taxa enriched in the presence of root hairs generally enhanced growth compared to taxa enriched in their absence. Our findings suggest the root hairs' adaptive value extends to plant‐microbe interactions mediated by root exudates, affecting plant phenotypes, and ultimately, growth. 
    more » « less
  5. Abstract Background and AimsNitrogenous fertilizers provide a short-lived benefit to crops in agroecosystems, but stimulate nitrification and denitrification, processes that result in nitrate pollution, N2O production, and reduced soil fertility. Recent advances in plant microbiome science suggest that genetic variation in plants can modulate the composition and activity of rhizosphere N-cycling microorganisms. Here we attempted to determine whether genetic variation exists inZea maysfor the ability to influence the rhizosphere nitrifier and denitrifier microbiome under “real-world” conventional agricultural conditions. MethodsTo capture an extensive amount of genetic diversity within maize we grew and sampled the rhizosphere microbiome of a diversity panel of germplasm that included ex-PVP inbreds (Z. maysssp.mays), ex-PVP hybrids (Z. maysssp.mays), and teosinte (Z. maysssp. mexicanaandZ. maysssp.parviglumis). From these samples, we characterized the microbiome, a suite of microbial genes involved in nitrification and denitrification and carried out N-cycling potential assays. ResultsHere we are showing that populations/genotypes of a single species can vary in their ecological interaction with denitrifers and nitrifers. Some hybrid and teosinte genotypes supported microbial communities with lower potential nitrification and potential denitrification activity in the rhizosphere, while inbred genotypes stimulated/did not inhibit these N-cycling activities. These potential differences translated to functional differences in N2O fluxes, with teosinte plots producing less GHG than maize plots. ConclusionTaken together, these results suggest thatZeagenetic variation can lead to changes in N-cycling processes that result in N leaching and N2O production, and thereby are selectable targets for crop improvement. Understanding the underlying genetic variation contributing to belowground microbiome N-cycling into our conventional agricultural system could be useful for sustainability. 
    more » « less